Spatial propagation for a reaction-diffusion SI epidemic model with vertical transmission
In this paper, we focus on spreading speed of a reaction-diffusion SI epidemic model with vertical transmission, which is a non-monotone system. More specifically, we prove that the solution of the system converges to the disease-free equilibrium as $ t \rightarrow \infty $ if $ R_{0} \leqslant 1 $...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ab9bb6e4d2f4488299bbbf6372fa8d32 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ab9bb6e4d2f4488299bbbf6372fa8d32 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ab9bb6e4d2f4488299bbbf6372fa8d322021-11-11T00:51:56ZSpatial propagation for a reaction-diffusion SI epidemic model with vertical transmission10.3934/mbe.20213011551-0018https://doaj.org/article/ab9bb6e4d2f4488299bbbf6372fa8d322021-07-01T00:00:00Zhttps://www.aimspress.com/article/doi/10.3934/mbe.2021301?viewType=HTMLhttps://doaj.org/toc/1551-0018In this paper, we focus on spreading speed of a reaction-diffusion SI epidemic model with vertical transmission, which is a non-monotone system. More specifically, we prove that the solution of the system converges to the disease-free equilibrium as $ t \rightarrow \infty $ if $ R_{0} \leqslant 1 $ and if $ R_0 > 1 $, there exists a critical speed $ c^\diamond > 0 $ such that if $ \|x\| = ct $ with $ c \in (0, c^\diamond) $, the disease is persistent and if $ \|x\| \geqslant ct $ with $ c > c^\diamond $, the infection dies out. Finally, we illustrate the asymptotic behaviour of the solution of the system via numerical simulations.Lin Zhao Haifeng HuoAIMS Pressarticlenon-monotone systemsi epidemic modelvertical transmissionspreading speedBiotechnologyTP248.13-248.65MathematicsQA1-939ENMathematical Biosciences and Engineering, Vol 18, Iss 5, Pp 6012-6033 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
non-monotone system si epidemic model vertical transmission spreading speed Biotechnology TP248.13-248.65 Mathematics QA1-939 |
spellingShingle |
non-monotone system si epidemic model vertical transmission spreading speed Biotechnology TP248.13-248.65 Mathematics QA1-939 Lin Zhao Haifeng Huo Spatial propagation for a reaction-diffusion SI epidemic model with vertical transmission |
description |
In this paper, we focus on spreading speed of a reaction-diffusion SI epidemic model with vertical transmission, which is a non-monotone system. More specifically, we prove that the solution of the system converges to the disease-free equilibrium as $ t \rightarrow \infty $ if $ R_{0} \leqslant 1 $ and if $ R_0 > 1 $, there exists a critical speed $ c^\diamond > 0 $ such that if $ \|x\| = ct $ with $ c \in (0, c^\diamond) $, the disease is persistent and if $ \|x\| \geqslant ct $ with $ c > c^\diamond $, the infection dies out. Finally, we illustrate the asymptotic behaviour of the solution of the system via numerical simulations. |
format |
article |
author |
Lin Zhao Haifeng Huo |
author_facet |
Lin Zhao Haifeng Huo |
author_sort |
Lin Zhao |
title |
Spatial propagation for a reaction-diffusion SI epidemic model with vertical transmission |
title_short |
Spatial propagation for a reaction-diffusion SI epidemic model with vertical transmission |
title_full |
Spatial propagation for a reaction-diffusion SI epidemic model with vertical transmission |
title_fullStr |
Spatial propagation for a reaction-diffusion SI epidemic model with vertical transmission |
title_full_unstemmed |
Spatial propagation for a reaction-diffusion SI epidemic model with vertical transmission |
title_sort |
spatial propagation for a reaction-diffusion si epidemic model with vertical transmission |
publisher |
AIMS Press |
publishDate |
2021 |
url |
https://doaj.org/article/ab9bb6e4d2f4488299bbbf6372fa8d32 |
work_keys_str_mv |
AT linzhao spatialpropagationforareactiondiffusionsiepidemicmodelwithverticaltransmission AT haifenghuo spatialpropagationforareactiondiffusionsiepidemicmodelwithverticaltransmission |
_version_ |
1718439613431808000 |