Broadband Terahertz Probes of Anisotropic Magnetoresistance Disentangle Extrinsic and Intrinsic Contributions

Anisotropic magnetoresistance (AMR) is a ubiquitous and versatile probe of magnetic order in contemporary spintronics research. Its origins are usually ascribed to extrinsic effects (i.e., spin-dependent electron scattering), whereas intrinsic (i.e., scattering-independent) contributions are neglect...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lukáš Nádvorník, Martin Borchert, Liane Brandt, Richard Schlitz, Koen A. de Mare, Karel Výborný, Ingrid Mertig, Gerhard Jakob, Matthias Kläui, Sebastian T. B. Goennenwein, Martin Wolf, Georg Woltersdorf, Tobias Kampfrath
Formato: article
Lenguaje:EN
Publicado: American Physical Society 2021
Materias:
Acceso en línea:https://doaj.org/article/abb7c42fed2f45e189c625e22ffde123
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:abb7c42fed2f45e189c625e22ffde123
record_format dspace
spelling oai:doaj.org-article:abb7c42fed2f45e189c625e22ffde1232021-12-02T15:36:48ZBroadband Terahertz Probes of Anisotropic Magnetoresistance Disentangle Extrinsic and Intrinsic Contributions10.1103/PhysRevX.11.0210302160-3308https://doaj.org/article/abb7c42fed2f45e189c625e22ffde1232021-05-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.11.021030http://doi.org/10.1103/PhysRevX.11.021030https://doaj.org/toc/2160-3308Anisotropic magnetoresistance (AMR) is a ubiquitous and versatile probe of magnetic order in contemporary spintronics research. Its origins are usually ascribed to extrinsic effects (i.e., spin-dependent electron scattering), whereas intrinsic (i.e., scattering-independent) contributions are neglected. Here, we measure AMR of polycrystalline thin films of the standard ferromagnets Co, Ni, Ni_{81}Fe_{19}, and Ni_{50}Fe_{50} over the frequency range from dc to 28 THz. The large bandwidth covers the regimes of both diffusive and ballistic intraband electron transport and, thus, allows us to separate extrinsic and intrinsic AMR components. Analysis of the THz response based on Boltzmann transport theory reveals that the AMR of the Ni, Ni_{81}Fe_{19}, and Ni_{50}Fe_{50} samples is of predominantly extrinsic nature. However, the Co thin film exhibits a sizable intrinsic AMR contribution, which is constant up to 28 THz and amounts to more than 2/3 of the dc AMR contrast of 1%. These features are attributed to the hexagonal structure of the Co crystallites. They are interesting for applications in terahertz spintronics and terahertz photonics. Our results show that broadband terahertz electromagnetic pulses provide new and contact-free insights into magnetotransport phenomena of standard magnetic thin films on ultrafast timescales.Lukáš NádvorníkMartin BorchertLiane BrandtRichard SchlitzKoen A. de MareKarel VýbornýIngrid MertigGerhard JakobMatthias KläuiSebastian T. B. GoennenweinMartin WolfGeorg WoltersdorfTobias KampfrathAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 11, Iss 2, p 021030 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
Lukáš Nádvorník
Martin Borchert
Liane Brandt
Richard Schlitz
Koen A. de Mare
Karel Výborný
Ingrid Mertig
Gerhard Jakob
Matthias Kläui
Sebastian T. B. Goennenwein
Martin Wolf
Georg Woltersdorf
Tobias Kampfrath
Broadband Terahertz Probes of Anisotropic Magnetoresistance Disentangle Extrinsic and Intrinsic Contributions
description Anisotropic magnetoresistance (AMR) is a ubiquitous and versatile probe of magnetic order in contemporary spintronics research. Its origins are usually ascribed to extrinsic effects (i.e., spin-dependent electron scattering), whereas intrinsic (i.e., scattering-independent) contributions are neglected. Here, we measure AMR of polycrystalline thin films of the standard ferromagnets Co, Ni, Ni_{81}Fe_{19}, and Ni_{50}Fe_{50} over the frequency range from dc to 28 THz. The large bandwidth covers the regimes of both diffusive and ballistic intraband electron transport and, thus, allows us to separate extrinsic and intrinsic AMR components. Analysis of the THz response based on Boltzmann transport theory reveals that the AMR of the Ni, Ni_{81}Fe_{19}, and Ni_{50}Fe_{50} samples is of predominantly extrinsic nature. However, the Co thin film exhibits a sizable intrinsic AMR contribution, which is constant up to 28 THz and amounts to more than 2/3 of the dc AMR contrast of 1%. These features are attributed to the hexagonal structure of the Co crystallites. They are interesting for applications in terahertz spintronics and terahertz photonics. Our results show that broadband terahertz electromagnetic pulses provide new and contact-free insights into magnetotransport phenomena of standard magnetic thin films on ultrafast timescales.
format article
author Lukáš Nádvorník
Martin Borchert
Liane Brandt
Richard Schlitz
Koen A. de Mare
Karel Výborný
Ingrid Mertig
Gerhard Jakob
Matthias Kläui
Sebastian T. B. Goennenwein
Martin Wolf
Georg Woltersdorf
Tobias Kampfrath
author_facet Lukáš Nádvorník
Martin Borchert
Liane Brandt
Richard Schlitz
Koen A. de Mare
Karel Výborný
Ingrid Mertig
Gerhard Jakob
Matthias Kläui
Sebastian T. B. Goennenwein
Martin Wolf
Georg Woltersdorf
Tobias Kampfrath
author_sort Lukáš Nádvorník
title Broadband Terahertz Probes of Anisotropic Magnetoresistance Disentangle Extrinsic and Intrinsic Contributions
title_short Broadband Terahertz Probes of Anisotropic Magnetoresistance Disentangle Extrinsic and Intrinsic Contributions
title_full Broadband Terahertz Probes of Anisotropic Magnetoresistance Disentangle Extrinsic and Intrinsic Contributions
title_fullStr Broadband Terahertz Probes of Anisotropic Magnetoresistance Disentangle Extrinsic and Intrinsic Contributions
title_full_unstemmed Broadband Terahertz Probes of Anisotropic Magnetoresistance Disentangle Extrinsic and Intrinsic Contributions
title_sort broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions
publisher American Physical Society
publishDate 2021
url https://doaj.org/article/abb7c42fed2f45e189c625e22ffde123
work_keys_str_mv AT lukasnadvornik broadbandterahertzprobesofanisotropicmagnetoresistancedisentangleextrinsicandintrinsiccontributions
AT martinborchert broadbandterahertzprobesofanisotropicmagnetoresistancedisentangleextrinsicandintrinsiccontributions
AT lianebrandt broadbandterahertzprobesofanisotropicmagnetoresistancedisentangleextrinsicandintrinsiccontributions
AT richardschlitz broadbandterahertzprobesofanisotropicmagnetoresistancedisentangleextrinsicandintrinsiccontributions
AT koenademare broadbandterahertzprobesofanisotropicmagnetoresistancedisentangleextrinsicandintrinsiccontributions
AT karelvyborny broadbandterahertzprobesofanisotropicmagnetoresistancedisentangleextrinsicandintrinsiccontributions
AT ingridmertig broadbandterahertzprobesofanisotropicmagnetoresistancedisentangleextrinsicandintrinsiccontributions
AT gerhardjakob broadbandterahertzprobesofanisotropicmagnetoresistancedisentangleextrinsicandintrinsiccontributions
AT matthiasklaui broadbandterahertzprobesofanisotropicmagnetoresistancedisentangleextrinsicandintrinsiccontributions
AT sebastiantbgoennenwein broadbandterahertzprobesofanisotropicmagnetoresistancedisentangleextrinsicandintrinsiccontributions
AT martinwolf broadbandterahertzprobesofanisotropicmagnetoresistancedisentangleextrinsicandintrinsiccontributions
AT georgwoltersdorf broadbandterahertzprobesofanisotropicmagnetoresistancedisentangleextrinsicandintrinsiccontributions
AT tobiaskampfrath broadbandterahertzprobesofanisotropicmagnetoresistancedisentangleextrinsicandintrinsiccontributions
_version_ 1718386309693702144