Model-based prediction of spatial gene expression via generative linear mapping

Single cell RNA-seq loses spatial information of gene expression in multicellular systems because tissue must be dissociated. Here, the authors show the spatial gene expression profiles can be both accurately and robustly reconstructed by a new computational method using a generative linear mapping,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yasushi Okochi, Shunta Sakaguchi, Ken Nakae, Takefumi Kondo, Honda Naoki
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/abbd231b7f69497dae153503ce587d0f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Single cell RNA-seq loses spatial information of gene expression in multicellular systems because tissue must be dissociated. Here, the authors show the spatial gene expression profiles can be both accurately and robustly reconstructed by a new computational method using a generative linear mapping, Perler.