Pure non-local machine-learned density functional theory for electron correlation
Semilocal density functionals, while computationally efficient, do not account for non-local correlation. Here, the authors propose a machine-learning approach to DFT that leads to non-local and transferable functionals applicable to non-covalent, ionic and covalent interactions across system of dif...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/abc59ecbfc9544beb4d600f57d73e09e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Semilocal density functionals, while computationally efficient, do not account for non-local correlation. Here, the authors propose a machine-learning approach to DFT that leads to non-local and transferable functionals applicable to non-covalent, ionic and covalent interactions across system of different sizes. |
---|