Pure non-local machine-learned density functional theory for electron correlation

Semilocal density functionals, while computationally efficient, do not account for non-local correlation. Here, the authors propose a machine-learning approach to DFT that leads to non-local and transferable functionals applicable to non-covalent, ionic and covalent interactions across system of dif...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Johannes T. Margraf, Karsten Reuter
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/abc59ecbfc9544beb4d600f57d73e09e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Semilocal density functionals, while computationally efficient, do not account for non-local correlation. Here, the authors propose a machine-learning approach to DFT that leads to non-local and transferable functionals applicable to non-covalent, ionic and covalent interactions across system of different sizes.