Pure non-local machine-learned density functional theory for electron correlation
Semilocal density functionals, while computationally efficient, do not account for non-local correlation. Here, the authors propose a machine-learning approach to DFT that leads to non-local and transferable functionals applicable to non-covalent, ionic and covalent interactions across system of dif...
Guardado en:
Autores principales: | Johannes T. Margraf, Karsten Reuter |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/abc59ecbfc9544beb4d600f57d73e09e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning in chemical reaction space
por: Sina Stocker, et al.
Publicado: (2020) -
Machine learning accurate exchange and correlation functionals of the electronic density
por: Sebastian Dick, et al.
Publicado: (2020) -
Accelerated mapping of electronic density of states patterns of metallic nanoparticles via machine-learning
por: Kihoon Bang, et al.
Publicado: (2021) -
Active discovery of organic semiconductors
por: Christian Kunkel, et al.
Publicado: (2021) -
Probing the Structural and Electronic Properties of Dirhenium Halide Clusters: A Density Functional Theory Study
por: Li Huan Zhang, et al.
Publicado: (2018)