Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution

The measurement of high magnetic fields has been limited to sensitivities in the nanotesla range. Here, the authors report advances in high-field magnetometry based on nuclear magnetic resonance, achieving resolution in the order of picoteslas or one part per trillion in relative terms.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Simon Gross, Christoph Barmet, Benjamin E. Dietrich, David O. Brunner, Thomas Schmid, Klaas P. Pruessmann
Format: article
Langue:EN
Publié: Nature Portfolio 2016
Sujets:
Q
Accès en ligne:https://doaj.org/article/abd0aeb1edce4d1eafc8c6ceea32e2ac
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
id oai:doaj.org-article:abd0aeb1edce4d1eafc8c6ceea32e2ac
record_format dspace
spelling oai:doaj.org-article:abd0aeb1edce4d1eafc8c6ceea32e2ac2021-12-02T17:32:20ZDynamic nuclear magnetic resonance field sensing with part-per-trillion resolution10.1038/ncomms137022041-1723https://doaj.org/article/abd0aeb1edce4d1eafc8c6ceea32e2ac2016-12-01T00:00:00Zhttps://doi.org/10.1038/ncomms13702https://doaj.org/toc/2041-1723The measurement of high magnetic fields has been limited to sensitivities in the nanotesla range. Here, the authors report advances in high-field magnetometry based on nuclear magnetic resonance, achieving resolution in the order of picoteslas or one part per trillion in relative terms.Simon GrossChristoph BarmetBenjamin E. DietrichDavid O. BrunnerThomas SchmidKlaas P. PruessmannNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-7 (2016)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Simon Gross
Christoph Barmet
Benjamin E. Dietrich
David O. Brunner
Thomas Schmid
Klaas P. Pruessmann
Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution
description The measurement of high magnetic fields has been limited to sensitivities in the nanotesla range. Here, the authors report advances in high-field magnetometry based on nuclear magnetic resonance, achieving resolution in the order of picoteslas or one part per trillion in relative terms.
format article
author Simon Gross
Christoph Barmet
Benjamin E. Dietrich
David O. Brunner
Thomas Schmid
Klaas P. Pruessmann
author_facet Simon Gross
Christoph Barmet
Benjamin E. Dietrich
David O. Brunner
Thomas Schmid
Klaas P. Pruessmann
author_sort Simon Gross
title Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution
title_short Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution
title_full Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution
title_fullStr Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution
title_full_unstemmed Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution
title_sort dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution
publisher Nature Portfolio
publishDate 2016
url https://doaj.org/article/abd0aeb1edce4d1eafc8c6ceea32e2ac
work_keys_str_mv AT simongross dynamicnuclearmagneticresonancefieldsensingwithpartpertrillionresolution
AT christophbarmet dynamicnuclearmagneticresonancefieldsensingwithpartpertrillionresolution
AT benjaminedietrich dynamicnuclearmagneticresonancefieldsensingwithpartpertrillionresolution
AT davidobrunner dynamicnuclearmagneticresonancefieldsensingwithpartpertrillionresolution
AT thomasschmid dynamicnuclearmagneticresonancefieldsensingwithpartpertrillionresolution
AT klaasppruessmann dynamicnuclearmagneticresonancefieldsensingwithpartpertrillionresolution
_version_ 1718380327537213440