General deep learning model for detecting diabetic retinopathy
Abstract Background Doctors can detect symptoms of diabetic retinopathy (DR) early by using retinal ophthalmoscopy, and they can improve diagnostic efficiency with the assistance of deep learning to select treatments and support personnel workflow. Conventionally, most deep learning methods for DR d...
Guardado en:
Autores principales: | Ping-Nan Chen, Chia-Chiang Lee, Chang-Min Liang, Shu-I Pao, Ke-Hao Huang, Ke-Feng Lin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/abd51fbc76304968aaa59243518d4b12 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Technical and imaging factors influencing performance of deep learning systems for diabetic retinopathy
por: Michelle Y. T. Yip, et al.
Publicado: (2020) -
Automated abnormality classification of chest radiographs using deep convolutional neural networks
por: Yu-Xing Tang, et al.
Publicado: (2020) -
Image Enhancement Model Based on Deep Learning Applied to the Ureteroscopic Diagnosis of Ureteral Stones during Pregnancy
por: Xiao-Yan Miao, et al.
Publicado: (2021) -
Deep representation learning of electronic health records to unlock patient stratification at scale
por: Isotta Landi, et al.
Publicado: (2020) -
Deep learning-enabled medical computer vision
por: Andre Esteva, et al.
Publicado: (2021)