Fine scale behaviour and time-budget in the cryptic ectotherm European pond turtle Emys orbicularis.

For ectotherms, behaviour and associated energetic costs are directly related to thermal conditions. In the present context of global change, estimating time-budget for these species is relevant to assess and predict their capacity to adapt to near future. We tested the hypothesis that in ectotherms...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Théo Marchand, Anne-Sophie Le Gal, Jean-Yves Georges
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/abea6af1d686424a9f7da34b16ea9161
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:For ectotherms, behaviour and associated energetic costs are directly related to thermal conditions. In the present context of global change, estimating time-budget for these species is relevant to assess and predict their capacity to adapt to near future. We tested the hypothesis that in ectotherms where reproduction is highly energy consuming, energy expenditure should vary throughout the breeding season with a maximum around nesting events. To test this hypothesis, we assessed the fine-scale behaviour, time-budget and estimated energetic costs in eight adult female European pond turtles Emys orbicularis equipped with data-loggers recording ambient temperature, pressure, light and the animals' 3-axis acceleration. Deployments occurred over four months throughout the nesting season 2017 in semi-natural captive conditions in Alsace, France. All study turtles showed a clear daily pattern over the 24h cycle, with four distinct phases (referred to as Night, Morning, Midday and Evening), associated with different behaviours and activity levels. Before oviposition, turtles were mostly active during Morning, and activity was positively driven by ambient temperature. Activity levels doubled during the nesting period, mostly due to the increased activity in the Evening, when nesting events occurred. Throughout the active season, basking occurrence at Midday was related to air temperature but cloud coverage was an even more important factor. Our results are a first step in predicting the seasonal time and energy budgets of the European pond turtle, and demonstrate the usefulness of animal-borne accelerometers to study free living freshwater turtles over extended periods of time.