Model Evaluation and Intercomparison of Marine Warm Low Cloud Fractions With Neural Network Ensembles
Abstract Low cloud fractions (LCFs) and meteorological factors (MFs) over an oceanic region containing multiple cloud regimes are examined for three data sets: one Energy Exascale Earth System Model (E3SM) simulation with the default 72‐layer vertical grid (E3SM72), another one with 8‐times vertical...
Guardado en:
Autores principales: | Yao‐Sheng Chen, Takanobu Yamaguchi, Peter A. Bogenschutz, Graham Feingold |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Geophysical Union (AGU)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/abfe21993682470981f5f851cc7c2ed6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Developing a Cloud Scheme With Prognostic Cloud Fraction and Two Moment Microphysics for ECHAM‐HAM
por: Steffen Muench, et al.
Publicado: (2020) -
Confronting the Challenge of Modeling Cloud and Precipitation Microphysics
por: Hugh Morrison, et al.
Publicado: (2020) -
Assessing the Potential of Deep Learning for Emulating Cloud Superparameterization in Climate Models With Real‐Geography Boundary Conditions
por: Griffin Mooers, et al.
Publicado: (2021) -
Cloud Process Coupling and Time Integration in the E3SM Atmosphere Model
por: Sean Patrick Santos, et al.
Publicado: (2021) -
Convection‐Permitting Simulations With the E3SM Global Atmosphere Model
por: P. M. Caldwell, et al.
Publicado: (2021)