Identification of cell types from single cell data using stable clustering
Abstract Single-cell RNA-seq (scRNASeq) has become a powerful technique for measuring the transcriptome of individual cells. Unlike the bulk measurements that average the gene expressions over the individual cells, gene measurements at individual cells can be used to study several different tissues...
Guardado en:
Autores principales: | Azam Peyvandipour, Adib Shafi, Nafiseh Saberian, Sorin Draghici |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ac0671e32d6d48e88007358b3fd7ccde |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Cell type identification from single-cell transcriptomes in melanoma
por: Qiuyan Huo, et al.
Publicado: (2021) -
Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor
por: Megan Crow, et al.
Publicado: (2018) -
DC3 is a method for deconvolution and coupled clustering from bulk and single-cell genomics data
por: Wanwen Zeng, et al.
Publicado: (2019) -
Mixture-of-Experts Variational Autoencoder for clustering and generating from similarity-based representations on single cell data.
por: Andreas Kopf, et al.
Publicado: (2021) -
A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data
por: Alexis Vandenbon, et al.
Publicado: (2020)