Non-metric conceptual clustering: a new tool for investigating urban quality of life (1)

Based on the use of a non-metric conceptual clustering technique, this empirical study explores the quality of life of a small metropolitan city. The RIFFLE program, developed at Western Washington University, is utilized to explicitly address the clustering algorithm where a subset n of m variables...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Patrick H. Buckley, Debnath Mookherjee
Formato: article
Lenguaje:DE
EN
FR
IT
PT
Publicado: Unité Mixte de Recherche 8504 Géographie-cités 1999
Materias:
Acceso en línea:https://doaj.org/article/ac0b6789747d43e5911bf6914d6660c2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Based on the use of a non-metric conceptual clustering technique, this empirical study explores the quality of life of a small metropolitan city. The RIFFLE program, developed at Western Washington University, is utilized to explicitly address the clustering algorithm where a subset n of m variables creates an n dimension vector space partitioned into two or more clusters in each dimension. Applying a variation of Guttman's Lambda n variables and c clusters are reported by RIFFLE that predict the pattern. Non-metric conceptual clustering overcomes a number of problems common in traditional techniques such as data assumptions, relevancy and missing data.