Non-metric conceptual clustering: a new tool for investigating urban quality of life (1)
Based on the use of a non-metric conceptual clustering technique, this empirical study explores the quality of life of a small metropolitan city. The RIFFLE program, developed at Western Washington University, is utilized to explicitly address the clustering algorithm where a subset n of m variables...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | DE EN FR IT PT |
Publicado: |
Unité Mixte de Recherche 8504 Géographie-cités
1999
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ac0b6789747d43e5911bf6914d6660c2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ac0b6789747d43e5911bf6914d6660c2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ac0b6789747d43e5911bf6914d6660c22021-12-02T11:10:22ZNon-metric conceptual clustering: a new tool for investigating urban quality of life (1)1278-336610.4000/cybergeo.4963https://doaj.org/article/ac0b6789747d43e5911bf6914d6660c21999-10-01T00:00:00Zhttp://journals.openedition.org/cybergeo/4963https://doaj.org/toc/1278-3366Based on the use of a non-metric conceptual clustering technique, this empirical study explores the quality of life of a small metropolitan city. The RIFFLE program, developed at Western Washington University, is utilized to explicitly address the clustering algorithm where a subset n of m variables creates an n dimension vector space partitioned into two or more clusters in each dimension. Applying a variation of Guttman's Lambda n variables and c clusters are reported by RIFFLE that predict the pattern. Non-metric conceptual clustering overcomes a number of problems common in traditional techniques such as data assumptions, relevancy and missing data.Patrick H. BuckleyDebnath MookherjeeUnité Mixte de Recherche 8504 Géographie-citésarticlenon metric conceptual clusteringfactor analysisquality of lifeGeography (General)G1-922DEENFRITPTCybergeo (1999) |
institution |
DOAJ |
collection |
DOAJ |
language |
DE EN FR IT PT |
topic |
non metric conceptual clustering factor analysis quality of life Geography (General) G1-922 |
spellingShingle |
non metric conceptual clustering factor analysis quality of life Geography (General) G1-922 Patrick H. Buckley Debnath Mookherjee Non-metric conceptual clustering: a new tool for investigating urban quality of life (1) |
description |
Based on the use of a non-metric conceptual clustering technique, this empirical study explores the quality of life of a small metropolitan city. The RIFFLE program, developed at Western Washington University, is utilized to explicitly address the clustering algorithm where a subset n of m variables creates an n dimension vector space partitioned into two or more clusters in each dimension. Applying a variation of Guttman's Lambda n variables and c clusters are reported by RIFFLE that predict the pattern. Non-metric conceptual clustering overcomes a number of problems common in traditional techniques such as data assumptions, relevancy and missing data. |
format |
article |
author |
Patrick H. Buckley Debnath Mookherjee |
author_facet |
Patrick H. Buckley Debnath Mookherjee |
author_sort |
Patrick H. Buckley |
title |
Non-metric conceptual clustering: a new tool for investigating urban quality of life (1) |
title_short |
Non-metric conceptual clustering: a new tool for investigating urban quality of life (1) |
title_full |
Non-metric conceptual clustering: a new tool for investigating urban quality of life (1) |
title_fullStr |
Non-metric conceptual clustering: a new tool for investigating urban quality of life (1) |
title_full_unstemmed |
Non-metric conceptual clustering: a new tool for investigating urban quality of life (1) |
title_sort |
non-metric conceptual clustering: a new tool for investigating urban quality of life (1) |
publisher |
Unité Mixte de Recherche 8504 Géographie-cités |
publishDate |
1999 |
url |
https://doaj.org/article/ac0b6789747d43e5911bf6914d6660c2 |
work_keys_str_mv |
AT patrickhbuckley nonmetricconceptualclusteringanewtoolforinvestigatingurbanqualityoflife1 AT debnathmookherjee nonmetricconceptualclusteringanewtoolforinvestigatingurbanqualityoflife1 |
_version_ |
1718396179685834752 |