High planting density induces the expression of GA3-oxidase in leaves and GA mediated stem elongation in bioenergy sorghum
Abstract The stems of bioenergy sorghum hybrids at harvest are > 4 m long, contain > 40 internodes and account for ~ 80% of harvested biomass. In this study, bioenergy sorghum hybrids were grown at four planting densities (~ 20,000 to 132,000 plants/ha) under field conditions for 60 days to in...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ac1cf47b859c41fcbd997855a2b55d4e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ac1cf47b859c41fcbd997855a2b55d4e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ac1cf47b859c41fcbd997855a2b55d4e2021-12-02T15:13:06ZHigh planting density induces the expression of GA3-oxidase in leaves and GA mediated stem elongation in bioenergy sorghum10.1038/s41598-020-79975-82045-2322https://doaj.org/article/ac1cf47b859c41fcbd997855a2b55d4e2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-79975-8https://doaj.org/toc/2045-2322Abstract The stems of bioenergy sorghum hybrids at harvest are > 4 m long, contain > 40 internodes and account for ~ 80% of harvested biomass. In this study, bioenergy sorghum hybrids were grown at four planting densities (~ 20,000 to 132,000 plants/ha) under field conditions for 60 days to investigate the impact shading has on stem growth and biomass accumulation. Increased planting density induced a > 2-fold increase in sorghum internode length and a ~ 22% decrease in stem diameter, a typical shade avoidance response. Shade-induced internode elongation was due to an increase in cell length and number of cells spanning the length of internodes. SbGA3ox2 (Sobic.003G045900), a gene encoding the last step in GA biosynthesis, was expressed ~ 20-fold higher in leaf collar tissue of developing phytomers in plants grown at high vs. low density. Application of GA3 to bioenergy sorghum increased plant height, stem internode length, cell length and the number of cells spanning internodes. Prior research showed that sorghum plants lacking phytochrome B, a key photoreceptor involved in shade signaling, accumulated more GA1 and displayed shade avoidance phenotypes. These results are consistent with the hypothesis that increasing planting density induces expression of GA3-oxidase in leaf collar tissue, increasing synthesis of GA that stimulates internode elongation.Ka Man Jasmine YuBrian McKinleyWilliam L. RooneyJohn E. MulletNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Ka Man Jasmine Yu Brian McKinley William L. Rooney John E. Mullet High planting density induces the expression of GA3-oxidase in leaves and GA mediated stem elongation in bioenergy sorghum |
description |
Abstract The stems of bioenergy sorghum hybrids at harvest are > 4 m long, contain > 40 internodes and account for ~ 80% of harvested biomass. In this study, bioenergy sorghum hybrids were grown at four planting densities (~ 20,000 to 132,000 plants/ha) under field conditions for 60 days to investigate the impact shading has on stem growth and biomass accumulation. Increased planting density induced a > 2-fold increase in sorghum internode length and a ~ 22% decrease in stem diameter, a typical shade avoidance response. Shade-induced internode elongation was due to an increase in cell length and number of cells spanning the length of internodes. SbGA3ox2 (Sobic.003G045900), a gene encoding the last step in GA biosynthesis, was expressed ~ 20-fold higher in leaf collar tissue of developing phytomers in plants grown at high vs. low density. Application of GA3 to bioenergy sorghum increased plant height, stem internode length, cell length and the number of cells spanning internodes. Prior research showed that sorghum plants lacking phytochrome B, a key photoreceptor involved in shade signaling, accumulated more GA1 and displayed shade avoidance phenotypes. These results are consistent with the hypothesis that increasing planting density induces expression of GA3-oxidase in leaf collar tissue, increasing synthesis of GA that stimulates internode elongation. |
format |
article |
author |
Ka Man Jasmine Yu Brian McKinley William L. Rooney John E. Mullet |
author_facet |
Ka Man Jasmine Yu Brian McKinley William L. Rooney John E. Mullet |
author_sort |
Ka Man Jasmine Yu |
title |
High planting density induces the expression of GA3-oxidase in leaves and GA mediated stem elongation in bioenergy sorghum |
title_short |
High planting density induces the expression of GA3-oxidase in leaves and GA mediated stem elongation in bioenergy sorghum |
title_full |
High planting density induces the expression of GA3-oxidase in leaves and GA mediated stem elongation in bioenergy sorghum |
title_fullStr |
High planting density induces the expression of GA3-oxidase in leaves and GA mediated stem elongation in bioenergy sorghum |
title_full_unstemmed |
High planting density induces the expression of GA3-oxidase in leaves and GA mediated stem elongation in bioenergy sorghum |
title_sort |
high planting density induces the expression of ga3-oxidase in leaves and ga mediated stem elongation in bioenergy sorghum |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/ac1cf47b859c41fcbd997855a2b55d4e |
work_keys_str_mv |
AT kamanjasmineyu highplantingdensityinducestheexpressionofga3oxidaseinleavesandgamediatedstemelongationinbioenergysorghum AT brianmckinley highplantingdensityinducestheexpressionofga3oxidaseinleavesandgamediatedstemelongationinbioenergysorghum AT williamlrooney highplantingdensityinducestheexpressionofga3oxidaseinleavesandgamediatedstemelongationinbioenergysorghum AT johnemullet highplantingdensityinducestheexpressionofga3oxidaseinleavesandgamediatedstemelongationinbioenergysorghum |
_version_ |
1718387591956398080 |