Dynamic changes in Ezh2 gene occupancy underlie its involvement in neural stem cell self-renewal and differentiation towards oligodendrocytes.

<h4>Background</h4>The polycomb group protein Ezh2 is an epigenetic repressor of transcription originally found to prevent untimely differentiation of pluripotent embryonic stem cells. We previously demonstrated that Ezh2 is also expressed in multipotent neural stem cells (NSCs). We show...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Falak Sher, Erik Boddeke, Marta Olah, Sjef Copray
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ac1e391e4aaf453a837d53f42ddc4fa4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ac1e391e4aaf453a837d53f42ddc4fa4
record_format dspace
spelling oai:doaj.org-article:ac1e391e4aaf453a837d53f42ddc4fa42021-11-18T07:12:41ZDynamic changes in Ezh2 gene occupancy underlie its involvement in neural stem cell self-renewal and differentiation towards oligodendrocytes.1932-620310.1371/journal.pone.0040399https://doaj.org/article/ac1e391e4aaf453a837d53f42ddc4fa42012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22808153/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Background</h4>The polycomb group protein Ezh2 is an epigenetic repressor of transcription originally found to prevent untimely differentiation of pluripotent embryonic stem cells. We previously demonstrated that Ezh2 is also expressed in multipotent neural stem cells (NSCs). We showed that Ezh2 expression is downregulated during NSC differentiation into astrocytes or neurons. However, high levels of Ezh2 remained present in differentiating oligodendrocytes until myelinating. This study aimed to elucidate the target genes of Ezh2 in NSCs and in premyelinating oligodendrocytes (pOLs).<h4>Methodology/principal findings</h4>We performed chromatin immunoprecipitation followed by high-throughput sequencing to detect the target genes of Ezh2 in NSCs and pOLs. We found 1532 target genes of Ezh2 in NSCs. During NSC differentiation, the occupancy of these genes by Ezh2 was alleviated. However, when the NSCs differentiated into oligodendrocytes, 393 of these genes remained targets of Ezh2. Analysis of the target genes indicated that the repressive activity of Ezh2 in NSCs concerns genes involved in stem cell maintenance, in cell cycle control and in preventing neural differentiation. Among the genes in pOLs that were still repressed by Ezh2 were most prominently those associated with neuronal and astrocytic committed cell lineages. Suppression of Ezh2 activity in NSCs caused loss of stem cell characteristics, blocked their proliferation and ultimately induced apoptosis. Suppression of Ezh2 activity in pOLs resulted in derangement of the oligodendrocytic phenotype, due to re-expression of neuronal and astrocytic genes, and ultimately in apoptosis.<h4>Conclusions/significance</h4>Our data indicate that the epigenetic repressor Ezh2 in NSCs is crucial for proliferative activity and maintenance of neural stemness. During differentiation towards oligodendrocytes, Ezh2 repression continues particularly to suppress other neural fate choices. Ezh2 is completely downregulated during differentiation towards neurons and astrocytes allowing transcription of these differentiation programs. The specific fate choice towards astrocytes or neurons is apparently controlled by epigenetic regulators other than Ezh2.Falak SherErik BoddekeMarta OlahSjef CoprayPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 7, p e40399 (2012)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Falak Sher
Erik Boddeke
Marta Olah
Sjef Copray
Dynamic changes in Ezh2 gene occupancy underlie its involvement in neural stem cell self-renewal and differentiation towards oligodendrocytes.
description <h4>Background</h4>The polycomb group protein Ezh2 is an epigenetic repressor of transcription originally found to prevent untimely differentiation of pluripotent embryonic stem cells. We previously demonstrated that Ezh2 is also expressed in multipotent neural stem cells (NSCs). We showed that Ezh2 expression is downregulated during NSC differentiation into astrocytes or neurons. However, high levels of Ezh2 remained present in differentiating oligodendrocytes until myelinating. This study aimed to elucidate the target genes of Ezh2 in NSCs and in premyelinating oligodendrocytes (pOLs).<h4>Methodology/principal findings</h4>We performed chromatin immunoprecipitation followed by high-throughput sequencing to detect the target genes of Ezh2 in NSCs and pOLs. We found 1532 target genes of Ezh2 in NSCs. During NSC differentiation, the occupancy of these genes by Ezh2 was alleviated. However, when the NSCs differentiated into oligodendrocytes, 393 of these genes remained targets of Ezh2. Analysis of the target genes indicated that the repressive activity of Ezh2 in NSCs concerns genes involved in stem cell maintenance, in cell cycle control and in preventing neural differentiation. Among the genes in pOLs that were still repressed by Ezh2 were most prominently those associated with neuronal and astrocytic committed cell lineages. Suppression of Ezh2 activity in NSCs caused loss of stem cell characteristics, blocked their proliferation and ultimately induced apoptosis. Suppression of Ezh2 activity in pOLs resulted in derangement of the oligodendrocytic phenotype, due to re-expression of neuronal and astrocytic genes, and ultimately in apoptosis.<h4>Conclusions/significance</h4>Our data indicate that the epigenetic repressor Ezh2 in NSCs is crucial for proliferative activity and maintenance of neural stemness. During differentiation towards oligodendrocytes, Ezh2 repression continues particularly to suppress other neural fate choices. Ezh2 is completely downregulated during differentiation towards neurons and astrocytes allowing transcription of these differentiation programs. The specific fate choice towards astrocytes or neurons is apparently controlled by epigenetic regulators other than Ezh2.
format article
author Falak Sher
Erik Boddeke
Marta Olah
Sjef Copray
author_facet Falak Sher
Erik Boddeke
Marta Olah
Sjef Copray
author_sort Falak Sher
title Dynamic changes in Ezh2 gene occupancy underlie its involvement in neural stem cell self-renewal and differentiation towards oligodendrocytes.
title_short Dynamic changes in Ezh2 gene occupancy underlie its involvement in neural stem cell self-renewal and differentiation towards oligodendrocytes.
title_full Dynamic changes in Ezh2 gene occupancy underlie its involvement in neural stem cell self-renewal and differentiation towards oligodendrocytes.
title_fullStr Dynamic changes in Ezh2 gene occupancy underlie its involvement in neural stem cell self-renewal and differentiation towards oligodendrocytes.
title_full_unstemmed Dynamic changes in Ezh2 gene occupancy underlie its involvement in neural stem cell self-renewal and differentiation towards oligodendrocytes.
title_sort dynamic changes in ezh2 gene occupancy underlie its involvement in neural stem cell self-renewal and differentiation towards oligodendrocytes.
publisher Public Library of Science (PLoS)
publishDate 2012
url https://doaj.org/article/ac1e391e4aaf453a837d53f42ddc4fa4
work_keys_str_mv AT falaksher dynamicchangesinezh2geneoccupancyunderlieitsinvolvementinneuralstemcellselfrenewalanddifferentiationtowardsoligodendrocytes
AT erikboddeke dynamicchangesinezh2geneoccupancyunderlieitsinvolvementinneuralstemcellselfrenewalanddifferentiationtowardsoligodendrocytes
AT martaolah dynamicchangesinezh2geneoccupancyunderlieitsinvolvementinneuralstemcellselfrenewalanddifferentiationtowardsoligodendrocytes
AT sjefcopray dynamicchangesinezh2geneoccupancyunderlieitsinvolvementinneuralstemcellselfrenewalanddifferentiationtowardsoligodendrocytes
_version_ 1718423808240517120