A prognostic model for colorectal cancer based on CEA and a 48-multiplex serum biomarker panel

Abstract Mortality in colorectal cancer (CRC) remains high, resulting in 860,000 deaths annually. Carcinoembryonic antigen is widely used in clinics for CRC patient follow-up, despite carrying a limited prognostic value. Thus, an obvious need exists for multivariate prognostic models. We analyzed 48...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kajsa Björkman, Sirpa Jalkanen, Marko Salmi, Harri Mustonen, Tuomas Kaprio, Henna Kekki, Kim Pettersson, Camilla Böckelman, Caj Haglund
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ac21611d9097442fbd90fbe9222b2422
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ac21611d9097442fbd90fbe9222b2422
record_format dspace
spelling oai:doaj.org-article:ac21611d9097442fbd90fbe9222b24222021-12-02T14:28:14ZA prognostic model for colorectal cancer based on CEA and a 48-multiplex serum biomarker panel10.1038/s41598-020-80785-12045-2322https://doaj.org/article/ac21611d9097442fbd90fbe9222b24222021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-80785-1https://doaj.org/toc/2045-2322Abstract Mortality in colorectal cancer (CRC) remains high, resulting in 860,000 deaths annually. Carcinoembryonic antigen is widely used in clinics for CRC patient follow-up, despite carrying a limited prognostic value. Thus, an obvious need exists for multivariate prognostic models. We analyzed 48 biomarkers using a multiplex immunoassay panel in preoperative serum samples from 328 CRC patients who underwent surgery at Helsinki University Hospital between 1998 and 2003. We performed a multivariate prognostic forward-stepping background model based on basic clinicopathological data, and a multivariate machine-learned prognostic model based on clinicopathological data and biomarker variables, calculating the disease-free survival using the value of importance score. From the 48 analyzed biomarkers, only IL-8 emerged as a significant prognostic factor for CRC patients in univariate analysis (HR 4.88; 95% CI 2.00–11.92; p = 0.024) after correcting for multiple comparisons. We also developed a multivariate model based on all 48 biomarkers using a random survival forest analysis. Variable selection based on a minimal depth and the value of importance yielded two tentative candidate CRC prognostic markers: IL-2Ra and IL-8. A multivariate prognostic model using machine-learning technologies improves the prognostic assessment of survival among surgically treated CRC patients.Kajsa BjörkmanSirpa JalkanenMarko SalmiHarri MustonenTuomas KaprioHenna KekkiKim PetterssonCamilla BöckelmanCaj HaglundNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Kajsa Björkman
Sirpa Jalkanen
Marko Salmi
Harri Mustonen
Tuomas Kaprio
Henna Kekki
Kim Pettersson
Camilla Böckelman
Caj Haglund
A prognostic model for colorectal cancer based on CEA and a 48-multiplex serum biomarker panel
description Abstract Mortality in colorectal cancer (CRC) remains high, resulting in 860,000 deaths annually. Carcinoembryonic antigen is widely used in clinics for CRC patient follow-up, despite carrying a limited prognostic value. Thus, an obvious need exists for multivariate prognostic models. We analyzed 48 biomarkers using a multiplex immunoassay panel in preoperative serum samples from 328 CRC patients who underwent surgery at Helsinki University Hospital between 1998 and 2003. We performed a multivariate prognostic forward-stepping background model based on basic clinicopathological data, and a multivariate machine-learned prognostic model based on clinicopathological data and biomarker variables, calculating the disease-free survival using the value of importance score. From the 48 analyzed biomarkers, only IL-8 emerged as a significant prognostic factor for CRC patients in univariate analysis (HR 4.88; 95% CI 2.00–11.92; p = 0.024) after correcting for multiple comparisons. We also developed a multivariate model based on all 48 biomarkers using a random survival forest analysis. Variable selection based on a minimal depth and the value of importance yielded two tentative candidate CRC prognostic markers: IL-2Ra and IL-8. A multivariate prognostic model using machine-learning technologies improves the prognostic assessment of survival among surgically treated CRC patients.
format article
author Kajsa Björkman
Sirpa Jalkanen
Marko Salmi
Harri Mustonen
Tuomas Kaprio
Henna Kekki
Kim Pettersson
Camilla Böckelman
Caj Haglund
author_facet Kajsa Björkman
Sirpa Jalkanen
Marko Salmi
Harri Mustonen
Tuomas Kaprio
Henna Kekki
Kim Pettersson
Camilla Böckelman
Caj Haglund
author_sort Kajsa Björkman
title A prognostic model for colorectal cancer based on CEA and a 48-multiplex serum biomarker panel
title_short A prognostic model for colorectal cancer based on CEA and a 48-multiplex serum biomarker panel
title_full A prognostic model for colorectal cancer based on CEA and a 48-multiplex serum biomarker panel
title_fullStr A prognostic model for colorectal cancer based on CEA and a 48-multiplex serum biomarker panel
title_full_unstemmed A prognostic model for colorectal cancer based on CEA and a 48-multiplex serum biomarker panel
title_sort prognostic model for colorectal cancer based on cea and a 48-multiplex serum biomarker panel
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/ac21611d9097442fbd90fbe9222b2422
work_keys_str_mv AT kajsabjorkman aprognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel
AT sirpajalkanen aprognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel
AT markosalmi aprognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel
AT harrimustonen aprognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel
AT tuomaskaprio aprognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel
AT hennakekki aprognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel
AT kimpettersson aprognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel
AT camillabockelman aprognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel
AT cajhaglund aprognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel
AT kajsabjorkman prognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel
AT sirpajalkanen prognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel
AT markosalmi prognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel
AT harrimustonen prognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel
AT tuomaskaprio prognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel
AT hennakekki prognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel
AT kimpettersson prognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel
AT camillabockelman prognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel
AT cajhaglund prognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel
_version_ 1718391273306456064