A prognostic model for colorectal cancer based on CEA and a 48-multiplex serum biomarker panel
Abstract Mortality in colorectal cancer (CRC) remains high, resulting in 860,000 deaths annually. Carcinoembryonic antigen is widely used in clinics for CRC patient follow-up, despite carrying a limited prognostic value. Thus, an obvious need exists for multivariate prognostic models. We analyzed 48...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ac21611d9097442fbd90fbe9222b2422 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ac21611d9097442fbd90fbe9222b2422 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ac21611d9097442fbd90fbe9222b24222021-12-02T14:28:14ZA prognostic model for colorectal cancer based on CEA and a 48-multiplex serum biomarker panel10.1038/s41598-020-80785-12045-2322https://doaj.org/article/ac21611d9097442fbd90fbe9222b24222021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-80785-1https://doaj.org/toc/2045-2322Abstract Mortality in colorectal cancer (CRC) remains high, resulting in 860,000 deaths annually. Carcinoembryonic antigen is widely used in clinics for CRC patient follow-up, despite carrying a limited prognostic value. Thus, an obvious need exists for multivariate prognostic models. We analyzed 48 biomarkers using a multiplex immunoassay panel in preoperative serum samples from 328 CRC patients who underwent surgery at Helsinki University Hospital between 1998 and 2003. We performed a multivariate prognostic forward-stepping background model based on basic clinicopathological data, and a multivariate machine-learned prognostic model based on clinicopathological data and biomarker variables, calculating the disease-free survival using the value of importance score. From the 48 analyzed biomarkers, only IL-8 emerged as a significant prognostic factor for CRC patients in univariate analysis (HR 4.88; 95% CI 2.00–11.92; p = 0.024) after correcting for multiple comparisons. We also developed a multivariate model based on all 48 biomarkers using a random survival forest analysis. Variable selection based on a minimal depth and the value of importance yielded two tentative candidate CRC prognostic markers: IL-2Ra and IL-8. A multivariate prognostic model using machine-learning technologies improves the prognostic assessment of survival among surgically treated CRC patients.Kajsa BjörkmanSirpa JalkanenMarko SalmiHarri MustonenTuomas KaprioHenna KekkiKim PetterssonCamilla BöckelmanCaj HaglundNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Kajsa Björkman Sirpa Jalkanen Marko Salmi Harri Mustonen Tuomas Kaprio Henna Kekki Kim Pettersson Camilla Böckelman Caj Haglund A prognostic model for colorectal cancer based on CEA and a 48-multiplex serum biomarker panel |
description |
Abstract Mortality in colorectal cancer (CRC) remains high, resulting in 860,000 deaths annually. Carcinoembryonic antigen is widely used in clinics for CRC patient follow-up, despite carrying a limited prognostic value. Thus, an obvious need exists for multivariate prognostic models. We analyzed 48 biomarkers using a multiplex immunoassay panel in preoperative serum samples from 328 CRC patients who underwent surgery at Helsinki University Hospital between 1998 and 2003. We performed a multivariate prognostic forward-stepping background model based on basic clinicopathological data, and a multivariate machine-learned prognostic model based on clinicopathological data and biomarker variables, calculating the disease-free survival using the value of importance score. From the 48 analyzed biomarkers, only IL-8 emerged as a significant prognostic factor for CRC patients in univariate analysis (HR 4.88; 95% CI 2.00–11.92; p = 0.024) after correcting for multiple comparisons. We also developed a multivariate model based on all 48 biomarkers using a random survival forest analysis. Variable selection based on a minimal depth and the value of importance yielded two tentative candidate CRC prognostic markers: IL-2Ra and IL-8. A multivariate prognostic model using machine-learning technologies improves the prognostic assessment of survival among surgically treated CRC patients. |
format |
article |
author |
Kajsa Björkman Sirpa Jalkanen Marko Salmi Harri Mustonen Tuomas Kaprio Henna Kekki Kim Pettersson Camilla Böckelman Caj Haglund |
author_facet |
Kajsa Björkman Sirpa Jalkanen Marko Salmi Harri Mustonen Tuomas Kaprio Henna Kekki Kim Pettersson Camilla Böckelman Caj Haglund |
author_sort |
Kajsa Björkman |
title |
A prognostic model for colorectal cancer based on CEA and a 48-multiplex serum biomarker panel |
title_short |
A prognostic model for colorectal cancer based on CEA and a 48-multiplex serum biomarker panel |
title_full |
A prognostic model for colorectal cancer based on CEA and a 48-multiplex serum biomarker panel |
title_fullStr |
A prognostic model for colorectal cancer based on CEA and a 48-multiplex serum biomarker panel |
title_full_unstemmed |
A prognostic model for colorectal cancer based on CEA and a 48-multiplex serum biomarker panel |
title_sort |
prognostic model for colorectal cancer based on cea and a 48-multiplex serum biomarker panel |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/ac21611d9097442fbd90fbe9222b2422 |
work_keys_str_mv |
AT kajsabjorkman aprognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel AT sirpajalkanen aprognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel AT markosalmi aprognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel AT harrimustonen aprognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel AT tuomaskaprio aprognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel AT hennakekki aprognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel AT kimpettersson aprognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel AT camillabockelman aprognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel AT cajhaglund aprognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel AT kajsabjorkman prognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel AT sirpajalkanen prognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel AT markosalmi prognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel AT harrimustonen prognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel AT tuomaskaprio prognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel AT hennakekki prognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel AT kimpettersson prognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel AT camillabockelman prognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel AT cajhaglund prognosticmodelforcolorectalcancerbasedonceaanda48multiplexserumbiomarkerpanel |
_version_ |
1718391273306456064 |