Graph Regularized Deep Sparse Representation for Unsupervised Anomaly Detection
Anomaly detection (AD) aims to distinguish the data points that are inconsistent with the overall pattern of the data. Recently, unsupervised anomaly detection methods have aroused huge attention. Among these methods, feature representation (FR) plays an important role, which can directly affect the...
Guardado en:
Autores principales: | Shicheng Li, Shumin Lai, Yan Jiang, Wenle Wang, Yugen Yi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ac3346f90fa2471b96cc71428fea995b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep representation learning of electronic health records to unlock patient stratification at scale
por: Isotta Landi, et al.
Publicado: (2020) -
Automated identification of clinical features from sparsely annotated 3-dimensional medical imaging
por: Nadav Rakocz, et al.
Publicado: (2021) -
DeePaN: deep patient graph convolutional network integrating clinico-genomic evidence to stratify lung cancers for immunotherapy
por: Chao Fang, et al.
Publicado: (2021) -
Multi-task deep learning for cardiac rhythm detection in wearable devices
por: Jessica Torres-Soto, et al.
Publicado: (2020) -
Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs
por: Rebecca M. Jones, et al.
Publicado: (2020)