AE-MLP: A Hybrid Deep Learning Approach for DDoS Detection and Classification
Distributed Denial-of-Service (DDoS) attacks are increasing as the demand for Internet connectivity massively grows in recent years. Conventional shallow machine learning-based techniques for DDoS attack classification tend to be ineffective when the volume and features of network traffic, potential...
Guardado en:
Autores principales: | Yuanyuan Wei, Julian Jang-Jaccard, Fariza Sabrina, Amardeep Singh, Wen Xu, Seyit Camtepe |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ac33e481129640ae8caa3ddace890695 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Hybrid Deep Learning Approach for Replay and DDoS Attack Detection in a Smart City
por: Asmaa A. Elsaeidy, et al.
Publicado: (2021) -
Intercept the Cloud Network From Brute Force and DDoS Attacks via Intrusion Detection and Prevention System
por: Muhammad Nadeem, et al.
Publicado: (2021) -
Multi-Classifier of DDoS Attacks in Computer Networks Built on Neural Networks
por: Andrés Chartuni, et al.
Publicado: (2021) -
A Deep Learning Approach for DDoS Attack Detection Using Supervised Learning
por: Tekleselassie Hailye
Publicado: (2021) -
Efficient Detection of Link-Flooding Attacks with Deep Learning
por: Chih-Hsiang Hsieh, et al.
Publicado: (2021)