Propagating acoustic waves on a culture substrate regulate the directional collective cell migration
Abstract Collective cell migration plays a critical role in physiological and pathological processes such as development, wound healing, and metastasis. Numerous studies have demonstrated how various types of chemical, mechanical, and electrical cues dictate the collective migratory behaviors of cel...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ac3c1e5ab34644d3a1367de4cabae919 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ac3c1e5ab34644d3a1367de4cabae919 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ac3c1e5ab34644d3a1367de4cabae9192021-11-14T12:10:01ZPropagating acoustic waves on a culture substrate regulate the directional collective cell migration10.1038/s41378-021-00304-82055-7434https://doaj.org/article/ac3c1e5ab34644d3a1367de4cabae9192021-11-01T00:00:00Zhttps://doi.org/10.1038/s41378-021-00304-8https://doaj.org/toc/2055-7434Abstract Collective cell migration plays a critical role in physiological and pathological processes such as development, wound healing, and metastasis. Numerous studies have demonstrated how various types of chemical, mechanical, and electrical cues dictate the collective migratory behaviors of cells. Although an acoustic cue can be advantageous because of its noninvasiveness and biocompatibility, cell migration in response to acoustic stimulation remains poorly understood. In this study, we developed a device that is able to apply surface acoustic waves to a cell culture substrate and investigated the effect of propagating acoustic waves on collective cell migration. The migration distance estimated at various wave intensities revealed that unidirectional cell migration was enhanced at a critical wave intensity and that it was suppressed as the intensity was further increased. The increased migration might be attributable to cell orientation alignment along the direction of the propagating wave, as characterized by nucleus shape. Thicker actin bundles indicative of a high traction force were observed in cells subjected to propagating acoustic waves at the critical intensity. Our device and technique can be useful for regulating cellular functions associated with cell migration.Chikahiro ImashiroByungjun KangYunam LeeYoun-Hoo HwangSeonghun ImDae-Eun KimKenjiro TakemuraHyungsuk LeeNature Publishing GrouparticleTechnologyTEngineering (General). Civil engineering (General)TA1-2040ENMicrosystems & Nanoengineering, Vol 7, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Technology T Engineering (General). Civil engineering (General) TA1-2040 |
spellingShingle |
Technology T Engineering (General). Civil engineering (General) TA1-2040 Chikahiro Imashiro Byungjun Kang Yunam Lee Youn-Hoo Hwang Seonghun Im Dae-Eun Kim Kenjiro Takemura Hyungsuk Lee Propagating acoustic waves on a culture substrate regulate the directional collective cell migration |
description |
Abstract Collective cell migration plays a critical role in physiological and pathological processes such as development, wound healing, and metastasis. Numerous studies have demonstrated how various types of chemical, mechanical, and electrical cues dictate the collective migratory behaviors of cells. Although an acoustic cue can be advantageous because of its noninvasiveness and biocompatibility, cell migration in response to acoustic stimulation remains poorly understood. In this study, we developed a device that is able to apply surface acoustic waves to a cell culture substrate and investigated the effect of propagating acoustic waves on collective cell migration. The migration distance estimated at various wave intensities revealed that unidirectional cell migration was enhanced at a critical wave intensity and that it was suppressed as the intensity was further increased. The increased migration might be attributable to cell orientation alignment along the direction of the propagating wave, as characterized by nucleus shape. Thicker actin bundles indicative of a high traction force were observed in cells subjected to propagating acoustic waves at the critical intensity. Our device and technique can be useful for regulating cellular functions associated with cell migration. |
format |
article |
author |
Chikahiro Imashiro Byungjun Kang Yunam Lee Youn-Hoo Hwang Seonghun Im Dae-Eun Kim Kenjiro Takemura Hyungsuk Lee |
author_facet |
Chikahiro Imashiro Byungjun Kang Yunam Lee Youn-Hoo Hwang Seonghun Im Dae-Eun Kim Kenjiro Takemura Hyungsuk Lee |
author_sort |
Chikahiro Imashiro |
title |
Propagating acoustic waves on a culture substrate regulate the directional collective cell migration |
title_short |
Propagating acoustic waves on a culture substrate regulate the directional collective cell migration |
title_full |
Propagating acoustic waves on a culture substrate regulate the directional collective cell migration |
title_fullStr |
Propagating acoustic waves on a culture substrate regulate the directional collective cell migration |
title_full_unstemmed |
Propagating acoustic waves on a culture substrate regulate the directional collective cell migration |
title_sort |
propagating acoustic waves on a culture substrate regulate the directional collective cell migration |
publisher |
Nature Publishing Group |
publishDate |
2021 |
url |
https://doaj.org/article/ac3c1e5ab34644d3a1367de4cabae919 |
work_keys_str_mv |
AT chikahiroimashiro propagatingacousticwavesonaculturesubstrateregulatethedirectionalcollectivecellmigration AT byungjunkang propagatingacousticwavesonaculturesubstrateregulatethedirectionalcollectivecellmigration AT yunamlee propagatingacousticwavesonaculturesubstrateregulatethedirectionalcollectivecellmigration AT younhoohwang propagatingacousticwavesonaculturesubstrateregulatethedirectionalcollectivecellmigration AT seonghunim propagatingacousticwavesonaculturesubstrateregulatethedirectionalcollectivecellmigration AT daeeunkim propagatingacousticwavesonaculturesubstrateregulatethedirectionalcollectivecellmigration AT kenjirotakemura propagatingacousticwavesonaculturesubstrateregulatethedirectionalcollectivecellmigration AT hyungsuklee propagatingacousticwavesonaculturesubstrateregulatethedirectionalcollectivecellmigration |
_version_ |
1718429423592538112 |