A Novel Age-Related Circular RNA Circ-ATXN2 Inhibits Proliferation, Promotes Cell Death and Adipogenesis in Rat Adipose Tissue-Derived Stromal Cells

Adipose tissue-derived stromal cells are promising candidates investigating the stem cell-related treatment. However, their proportion and utility in the human body decline with time, rendering stem cells incompetent to complete repair processes in vivo. The involvement of circRNAs in the aging proc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xing-Hui Song, Ning He, Yue-Ting Xing, Xiao-Qin Jin, Yan-Wei Li, Shuang-Shuang Liu, Zi-Ying Gao, Chun Guo, Jia-Jia Wang, Ying-Ying Huang, Hu Hu, Lin-Lin Wang
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/ac461801589e4c84ac61ffe6e42fd795
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ac461801589e4c84ac61ffe6e42fd795
record_format dspace
spelling oai:doaj.org-article:ac461801589e4c84ac61ffe6e42fd7952021-11-09T06:58:43ZA Novel Age-Related Circular RNA Circ-ATXN2 Inhibits Proliferation, Promotes Cell Death and Adipogenesis in Rat Adipose Tissue-Derived Stromal Cells1664-802110.3389/fgene.2021.761926https://doaj.org/article/ac461801589e4c84ac61ffe6e42fd7952021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fgene.2021.761926/fullhttps://doaj.org/toc/1664-8021Adipose tissue-derived stromal cells are promising candidates investigating the stem cell-related treatment. However, their proportion and utility in the human body decline with time, rendering stem cells incompetent to complete repair processes in vivo. The involvement of circRNAs in the aging process is poorly understood. Rat subcutaneous adipose tissue from 10-week-old and 27-month-old rats were used for hematoxylin and eosin (H and E) staining, TUNEL staining, and circRNA sequencing. Rat adipose tissue-derived stromal cells were cultured and overexpressed with circ-ATXN2. Proliferation was examined using xCELLigence real-time cell analysis, EdU staining, and cell cycle assay. Apoptosis was induced by CoCl2 and examined using flow cytometry. RT-PCR assay and Oil Red O staining were used to measure adipogenesis at 48 h and 14 days, respectively. H and E staining showed that the diameter of adipocytes increased; however, the number of cells decreased in old rats. TUNEL staining showed that the proportion of apoptotic cells was increased in old rats. A total of 4,860 and 4,952 circRNAs was detected in young and old rats, respectively. Among them, 67 circRNAs exhibited divergent expression between the two groups (fold change ≥2, p ≤ 0.05), of which 33 were upregulated (49.3%) and 34 were downregulated (50.7%). The proliferation of circ-ATXN2-overexpressing cells decreased significantly in vitro, which was further validated by xCELLigence real-time cell analysis, EdU staining, and cell cycle assay. Overexpression of circ-ATXN2 significantly increased the total apoptotic rate from 5.78 ± 0.46% to 11.97 ± 1.61%, early apoptotic rate from 1.76 ± 0.22% to 5.50 ± 0.66%, and late apoptosis rate from 4.02 ± 0.25% to 6.47 ± 1.06% in adipose tissue-derived stromal cells. Furthermore, in circ-ATXN2-overexpressing cells, RT-PCR assay revealed that the expression levels of adipose differentiation-related genes PPARγ and CEBP/α were increased and the Oil Red O staining assay showed more lipid droplets. Our study revealed the expression profile of circRNAs in the adipose tissue of old rats. We found a novel age-related circular RNA—circ-ATXN2—that inhibits proliferation and promotes cell death and adipogenesis in rat adipose tissue-derived stromal cells.Xing-Hui SongNing HeYue-Ting XingXiao-Qin JinYan-Wei LiShuang-Shuang LiuZi-Ying GaoChun GuoJia-Jia WangYing-Ying HuangHu HuLin-Lin WangFrontiers Media S.A.articleagingcirc-ATXN2proliferationadipogenesiscell deathASCsGeneticsQH426-470ENFrontiers in Genetics, Vol 12 (2021)
institution DOAJ
collection DOAJ
language EN
topic aging
circ-ATXN2
proliferation
adipogenesis
cell death
ASCs
Genetics
QH426-470
spellingShingle aging
circ-ATXN2
proliferation
adipogenesis
cell death
ASCs
Genetics
QH426-470
Xing-Hui Song
Ning He
Yue-Ting Xing
Xiao-Qin Jin
Yan-Wei Li
Shuang-Shuang Liu
Zi-Ying Gao
Chun Guo
Jia-Jia Wang
Ying-Ying Huang
Hu Hu
Lin-Lin Wang
A Novel Age-Related Circular RNA Circ-ATXN2 Inhibits Proliferation, Promotes Cell Death and Adipogenesis in Rat Adipose Tissue-Derived Stromal Cells
description Adipose tissue-derived stromal cells are promising candidates investigating the stem cell-related treatment. However, their proportion and utility in the human body decline with time, rendering stem cells incompetent to complete repair processes in vivo. The involvement of circRNAs in the aging process is poorly understood. Rat subcutaneous adipose tissue from 10-week-old and 27-month-old rats were used for hematoxylin and eosin (H and E) staining, TUNEL staining, and circRNA sequencing. Rat adipose tissue-derived stromal cells were cultured and overexpressed with circ-ATXN2. Proliferation was examined using xCELLigence real-time cell analysis, EdU staining, and cell cycle assay. Apoptosis was induced by CoCl2 and examined using flow cytometry. RT-PCR assay and Oil Red O staining were used to measure adipogenesis at 48 h and 14 days, respectively. H and E staining showed that the diameter of adipocytes increased; however, the number of cells decreased in old rats. TUNEL staining showed that the proportion of apoptotic cells was increased in old rats. A total of 4,860 and 4,952 circRNAs was detected in young and old rats, respectively. Among them, 67 circRNAs exhibited divergent expression between the two groups (fold change ≥2, p ≤ 0.05), of which 33 were upregulated (49.3%) and 34 were downregulated (50.7%). The proliferation of circ-ATXN2-overexpressing cells decreased significantly in vitro, which was further validated by xCELLigence real-time cell analysis, EdU staining, and cell cycle assay. Overexpression of circ-ATXN2 significantly increased the total apoptotic rate from 5.78 ± 0.46% to 11.97 ± 1.61%, early apoptotic rate from 1.76 ± 0.22% to 5.50 ± 0.66%, and late apoptosis rate from 4.02 ± 0.25% to 6.47 ± 1.06% in adipose tissue-derived stromal cells. Furthermore, in circ-ATXN2-overexpressing cells, RT-PCR assay revealed that the expression levels of adipose differentiation-related genes PPARγ and CEBP/α were increased and the Oil Red O staining assay showed more lipid droplets. Our study revealed the expression profile of circRNAs in the adipose tissue of old rats. We found a novel age-related circular RNA—circ-ATXN2—that inhibits proliferation and promotes cell death and adipogenesis in rat adipose tissue-derived stromal cells.
format article
author Xing-Hui Song
Ning He
Yue-Ting Xing
Xiao-Qin Jin
Yan-Wei Li
Shuang-Shuang Liu
Zi-Ying Gao
Chun Guo
Jia-Jia Wang
Ying-Ying Huang
Hu Hu
Lin-Lin Wang
author_facet Xing-Hui Song
Ning He
Yue-Ting Xing
Xiao-Qin Jin
Yan-Wei Li
Shuang-Shuang Liu
Zi-Ying Gao
Chun Guo
Jia-Jia Wang
Ying-Ying Huang
Hu Hu
Lin-Lin Wang
author_sort Xing-Hui Song
title A Novel Age-Related Circular RNA Circ-ATXN2 Inhibits Proliferation, Promotes Cell Death and Adipogenesis in Rat Adipose Tissue-Derived Stromal Cells
title_short A Novel Age-Related Circular RNA Circ-ATXN2 Inhibits Proliferation, Promotes Cell Death and Adipogenesis in Rat Adipose Tissue-Derived Stromal Cells
title_full A Novel Age-Related Circular RNA Circ-ATXN2 Inhibits Proliferation, Promotes Cell Death and Adipogenesis in Rat Adipose Tissue-Derived Stromal Cells
title_fullStr A Novel Age-Related Circular RNA Circ-ATXN2 Inhibits Proliferation, Promotes Cell Death and Adipogenesis in Rat Adipose Tissue-Derived Stromal Cells
title_full_unstemmed A Novel Age-Related Circular RNA Circ-ATXN2 Inhibits Proliferation, Promotes Cell Death and Adipogenesis in Rat Adipose Tissue-Derived Stromal Cells
title_sort novel age-related circular rna circ-atxn2 inhibits proliferation, promotes cell death and adipogenesis in rat adipose tissue-derived stromal cells
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/ac461801589e4c84ac61ffe6e42fd795
work_keys_str_mv AT xinghuisong anovelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT ninghe anovelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT yuetingxing anovelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT xiaoqinjin anovelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT yanweili anovelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT shuangshuangliu anovelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT ziyinggao anovelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT chunguo anovelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT jiajiawang anovelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT yingyinghuang anovelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT huhu anovelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT linlinwang anovelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT xinghuisong novelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT ninghe novelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT yuetingxing novelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT xiaoqinjin novelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT yanweili novelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT shuangshuangliu novelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT ziyinggao novelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT chunguo novelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT jiajiawang novelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT yingyinghuang novelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT huhu novelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
AT linlinwang novelagerelatedcircularrnacircatxn2inhibitsproliferationpromotescelldeathandadipogenesisinratadiposetissuederivedstromalcells
_version_ 1718441233050763264