Spatio-temporal prediction of the COVID-19 pandemic in US counties: modeling with a deep LSTM neural network
Abstract Prediction of complex epidemiological systems such as COVID-19 is challenging on many grounds. Commonly used compartmental models struggle to handle an epidemiological process that evolves rapidly and is spatially heterogeneous. On the other hand, machine learning methods are limited at the...
Guardado en:
Autores principales: | Behnam Nikparvar, Md. Mokhlesur Rahman, Faizeh Hatami, Jean-Claude Thill |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ac55c202cf834ba3a5d5637020e57b19 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Spatio-temporal clustering of hand, foot, and mouth disease at the county level in Guangxi, China.
por: Yi-hong Xie, et al.
Publicado: (2014) -
MOTION LEARNING USING SPATIO-TEMPORAL NEURAL NETWORK
por: Nooraini Yusoff, et al.
Publicado: (2020) -
Author Correction: Investigating the drivers of the spatio-temporal patterns of genetic differences between Plasmodium falciparum malaria infections in Kilifi County, Kenya
por: Josephine Malinga, et al.
Publicado: (2020) -
Deep Learning using Convolutional LSTM estimates Biological Age from Physical Activity
por: Syed Ashiqur Rahman, et al.
Publicado: (2019) -
A novel framework for spatio-temporal prediction of environmental data using deep learning
por: Federico Amato, et al.
Publicado: (2020)