Bayesian Parameter Estimation and Segmentation in the Multi-Atlas Random Orbit Model.
This paper examines the multiple atlas random diffeomorphic orbit model in Computational Anatomy (CA) for parameter estimation and segmentation of subcortical and ventricular neuroanatomy in magnetic resonance imagery. We assume that there exist multiple magnetic resonance image (MRI) atlases, each...
Guardado en:
Autores principales: | Xiaoying Tang, Kenichi Oishi, Andreia V Faria, Argye E Hillis, Marilyn S Albert, Susumu Mori, Michael I Miller |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ac57048decb24e1381337bcdb0104d91 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Using manifold learning for atlas selection in multi-atlas segmentation.
por: Albert K Hoang Duc, et al.
Publicado: (2013) -
Joint Estimation for DOA and Polarization Parameters in Sparse Bayesian Framework
por: Xu Haifeng
Publicado: (2021) -
Stochastic Spin-Orbit Torque Devices as Elements for Bayesian Inference
por: Yong Shim, et al.
Publicado: (2017) -
Tsallis generalized entropy for Gaussian mixture model parameter estimation on brain segmentation application
por: Mehran Azimbagirad, et al.
Publicado: (2021) -
Using global Bayesian optimization in ensemble data assimilation: parameter estimation, tuning localization and inflation, or all of the above
por: Spencer Lunderman, et al.
Publicado: (2021)