On Infinitely generated Fuchsian groups of the Loch Ness monster, the Cantor tree and the Blooming Cantor tree

In this paper, for a non-compact Riemman surface S homeomorphic to either: the Infinite Loch Ness monster, the Cantor tree and the Blooming Cantor tree, we give a precise description of an infinite set of generators of a Fuchsian group Γ < PSL(2, ℝ), such that the quotient space ℍ/Γ is a hyperbol...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Arredondo John A., Maluendas Camilo Ramírez
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2019
Materias:
Acceso en línea:https://doaj.org/article/ac5943e8a7ca4fae91f8689d54de80eb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ac5943e8a7ca4fae91f8689d54de80eb
record_format dspace
spelling oai:doaj.org-article:ac5943e8a7ca4fae91f8689d54de80eb2021-12-02T17:14:47ZOn Infinitely generated Fuchsian groups of the Loch Ness monster, the Cantor tree and the Blooming Cantor tree2300-744310.1515/coma-2020-0004https://doaj.org/article/ac5943e8a7ca4fae91f8689d54de80eb2019-12-01T00:00:00Zhttps://doi.org/10.1515/coma-2020-0004https://doaj.org/toc/2300-7443In this paper, for a non-compact Riemman surface S homeomorphic to either: the Infinite Loch Ness monster, the Cantor tree and the Blooming Cantor tree, we give a precise description of an infinite set of generators of a Fuchsian group Γ < PSL(2, ℝ), such that the quotient space ℍ/Γ is a hyperbolic Riemann surface homeomorphic to S. For each one of these constructions, we exhibit a hyperbolic polygon with an infinite number of sides and give a collection of Mobius transformations identifying the sides in pairs.Arredondo John A.Maluendas Camilo RamírezDe Gruyterarticleinfinite loch ness monstercantor treeblooming cantor treegeometric schottky groupsnoncompact surfaces20h1057n0557n16MathematicsQA1-939ENComplex Manifolds, Vol 7, Iss 1, Pp 73-92 (2019)
institution DOAJ
collection DOAJ
language EN
topic infinite loch ness monster
cantor tree
blooming cantor tree
geometric schottky groups
noncompact surfaces
20h10
57n05
57n16
Mathematics
QA1-939
spellingShingle infinite loch ness monster
cantor tree
blooming cantor tree
geometric schottky groups
noncompact surfaces
20h10
57n05
57n16
Mathematics
QA1-939
Arredondo John A.
Maluendas Camilo Ramírez
On Infinitely generated Fuchsian groups of the Loch Ness monster, the Cantor tree and the Blooming Cantor tree
description In this paper, for a non-compact Riemman surface S homeomorphic to either: the Infinite Loch Ness monster, the Cantor tree and the Blooming Cantor tree, we give a precise description of an infinite set of generators of a Fuchsian group Γ < PSL(2, ℝ), such that the quotient space ℍ/Γ is a hyperbolic Riemann surface homeomorphic to S. For each one of these constructions, we exhibit a hyperbolic polygon with an infinite number of sides and give a collection of Mobius transformations identifying the sides in pairs.
format article
author Arredondo John A.
Maluendas Camilo Ramírez
author_facet Arredondo John A.
Maluendas Camilo Ramírez
author_sort Arredondo John A.
title On Infinitely generated Fuchsian groups of the Loch Ness monster, the Cantor tree and the Blooming Cantor tree
title_short On Infinitely generated Fuchsian groups of the Loch Ness monster, the Cantor tree and the Blooming Cantor tree
title_full On Infinitely generated Fuchsian groups of the Loch Ness monster, the Cantor tree and the Blooming Cantor tree
title_fullStr On Infinitely generated Fuchsian groups of the Loch Ness monster, the Cantor tree and the Blooming Cantor tree
title_full_unstemmed On Infinitely generated Fuchsian groups of the Loch Ness monster, the Cantor tree and the Blooming Cantor tree
title_sort on infinitely generated fuchsian groups of the loch ness monster, the cantor tree and the blooming cantor tree
publisher De Gruyter
publishDate 2019
url https://doaj.org/article/ac5943e8a7ca4fae91f8689d54de80eb
work_keys_str_mv AT arredondojohna oninfinitelygeneratedfuchsiangroupsofthelochnessmonsterthecantortreeandthebloomingcantortree
AT maluendascamiloramirez oninfinitelygeneratedfuchsiangroupsofthelochnessmonsterthecantortreeandthebloomingcantortree
_version_ 1718381278827380736