Genetic Variability of Acetolactate Synthase (ALS) Sequence in <i>Centaurea cyanus</i> Plants Resistant and Susceptible to Tribenuron-Methyl

<i>Centaurea cyanus</i>, belonging to the Asteraceae family, is an arable weed species encountered mainly in fields with cereals, sugar beet, and maize. The high genetic variability of <i>C. cyanus</i> has been recently reported; however, little is known about its sequence va...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Barbara Wrzesińska, Tadeusz Praczyk
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
S
Acceso en línea:https://doaj.org/article/ac5e9d0912924af080303e9d5db7ca9e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<i>Centaurea cyanus</i>, belonging to the Asteraceae family, is an arable weed species encountered mainly in fields with cereals, sugar beet, and maize. The high genetic variability of <i>C. cyanus</i> has been recently reported; however, little is known about its sequence variability in the context of its herbicide resistance. <i>C. cyanus</i> resistance was found mainly against acetolactate synthase (ALS) inhibitors, but no ALS sequence information concerning the herbicide resistance mechanism has been published yet. The aim of this study was to determine the <i>ALS</i> sequences for biotypes susceptible and resistant to tribenuron-methyl in order to identify mutations that may be associated with the resistance emergence. DNA isolation from susceptible and resistant plants was followed by PCR amplification and <i>ALS</i> sequencing. As a result, different lengths of DNA products were obtained. Moreover, both nucleotide and amino acid sequence analysis revealed high sequence variability within one plant as well as between plants from the same biotype. In a few resistant plants, four changes in the amino acid sequence were identified in comparison to those in the susceptible ones. However, these preliminary studies require further investigation toward confirming the significance of these mutations in herbicide resistance development. This study provides preliminary information contributing to the research on the <i>C. cyanus</i> target-site resistance mechanism.