The fractional nonlinear $${\mathcal{PT}}$$ PT dimer
Abstract We examine a fractional discrete nonlinear Schrodinger dimer, where the usual first-order derivative in the time evolution is replaced by a non integer-order derivative. The dimer is nonlinear (Kerr) and $${\mathcal{{PT}}}$$ PT -symmetric, and for localized initial conditions we examine the...
Guardado en:
Autor principal: | Mario I. Molina |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ac6a7341ff4e496fbdeeafadb916f8a8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Enhanced nonlinear characteristics with the assistance of a $$\mathscr{PT}$$ 𝒫𝒯 -symmetric trimer system
por: Lei Du, et al.
Publicado: (2018) -
The loading effect of Pt clusters on Pt/graphene nano sheets catalysts
por: Rikson Siburian, et al.
Publicado: (2021) -
Interfacial properties of [Pt/Co/Pt] trilayers probed through magnetometry
por: Young Chan Won, et al.
Publicado: (2021) -
Author Correction: Strongly confined localized surface plasmon resonance (LSPR) bands of Pt, AgPt, AgAuPt nanoparticles
por: Mao Sui, et al.
Publicado: (2021) -
Families of stable solitons and excitations in the PT-symmetric nonlinear Schrödinger equations with position-dependent effective masses
por: Yong Chen, et al.
Publicado: (2017)