The fractional nonlinear $${\mathcal{PT}}$$ PT dimer
Abstract We examine a fractional discrete nonlinear Schrodinger dimer, where the usual first-order derivative in the time evolution is replaced by a non integer-order derivative. The dimer is nonlinear (Kerr) and $${\mathcal{{PT}}}$$ PT -symmetric, and for localized initial conditions we examine the...
Enregistré dans:
Auteur principal: | Mario I. Molina |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ac6a7341ff4e496fbdeeafadb916f8a8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Enhanced nonlinear characteristics with the assistance of a $$\mathscr{PT}$$ 𝒫𝒯 -symmetric trimer system
par: Lei Du, et autres
Publié: (2018) -
The loading effect of Pt clusters on Pt/graphene nano sheets catalysts
par: Rikson Siburian, et autres
Publié: (2021) -
Interfacial properties of [Pt/Co/Pt] trilayers probed through magnetometry
par: Young Chan Won, et autres
Publié: (2021) -
Author Correction: Strongly confined localized surface plasmon resonance (LSPR) bands of Pt, AgPt, AgAuPt nanoparticles
par: Mao Sui, et autres
Publié: (2021) -
Families of stable solitons and excitations in the PT-symmetric nonlinear Schrödinger equations with position-dependent effective masses
par: Yong Chen, et autres
Publié: (2017)