Digital proximity tracing on empirical contact networks for pandemic control
Digital contact tracing is increasingly considered as one of the tools to control infectious disease outbreaks, in particular the COVID-19 epidemic. Here, the authors present a modeling framework informed by empirical high-resolution contact data to analyze the impact of digital contact tracing apps...
Guardado en:
Autores principales: | G. Cencetti, G. Santin, A. Longa, E. Pigani, A. Barrat, C. Cattuto, S. Lehmann, M. Salathé, B. Lepri |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ac6b3461ae074685b3b8c94fb8c2002a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Temporal properties of higher-order interactions in social networks
por: Giulia Cencetti, et al.
Publicado: (2021) -
COVID-19 mitigation by digital contact tracing and contact prevention (app-based social exposure warnings)
por: Germán J. Soldano, et al.
Publicado: (2021) -
Stochastic sampling effects favor manual over digital contact tracing
por: Marco Mancastroppa, et al.
Publicado: (2021) -
Modelling digital and manual contact tracing for COVID-19. Are low uptakes and missed contacts deal-breakers?
por: Andrei C Rusu, et al.
Publicado: (2021) -
Modelling digital and manual contact tracing for COVID-19. Are low uptakes and missed contacts deal-breakers?
por: Andrei C. Rusu, et al.
Publicado: (2021)