Digital proximity tracing on empirical contact networks for pandemic control
Digital contact tracing is increasingly considered as one of the tools to control infectious disease outbreaks, in particular the COVID-19 epidemic. Here, the authors present a modeling framework informed by empirical high-resolution contact data to analyze the impact of digital contact tracing apps...
Enregistré dans:
Auteurs principaux: | G. Cencetti, G. Santin, A. Longa, E. Pigani, A. Barrat, C. Cattuto, S. Lehmann, M. Salathé, B. Lepri |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ac6b3461ae074685b3b8c94fb8c2002a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Temporal properties of higher-order interactions in social networks
par: Giulia Cencetti, et autres
Publié: (2021) -
COVID-19 mitigation by digital contact tracing and contact prevention (app-based social exposure warnings)
par: Germán J. Soldano, et autres
Publié: (2021) -
Stochastic sampling effects favor manual over digital contact tracing
par: Marco Mancastroppa, et autres
Publié: (2021) -
Modelling digital and manual contact tracing for COVID-19. Are low uptakes and missed contacts deal-breakers?
par: Andrei C Rusu, et autres
Publié: (2021) -
Modelling digital and manual contact tracing for COVID-19. Are low uptakes and missed contacts deal-breakers?
par: Andrei C. Rusu, et autres
Publié: (2021)