Accurate long-range forecasting of COVID-19 mortality in the USA
Abstract The need for improved models that can accurately predict COVID-19 dynamics is vital to managing the pandemic and its consequences. We use machine learning techniques to design an adaptive learner that, based on epidemiological data available at any given time, produces a model that accurate...
Guardado en:
Autores principales: | Pouria Ramazi, Arezoo Haratian, Maryam Meghdadi, Arash Mari Oriyad, Mark A. Lewis, Zeinab Maleki, Roberto Vega, Hao Wang, David S. Wishart, Russell Greiner |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ac72519b371340d4aede2c0064a6cd98 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Accurate surface ultraviolet radiation forecasting for clinical applications with deep neural network
por: R. Raksasat, et al.
Publicado: (2021) -
A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and Japan
por: Sercan Ö. Arık, et al.
Publicado: (2021) -
Accurate influenza forecasts using type-specific incidence data for small geographic units.
por: James Turtle, et al.
Publicado: (2021) -
Accurate diagnosis of prostate cancer using logistic regression
por: Hooshmand Arash
Publicado: (2021) -
Accurate Range-Free Localization Algorithms Based on PSO for Wireless Sensor Networks
por: Abdelali Hadir, et al.
Publicado: (2021)