Evaluating the Performances of Biomarkers over a Restricted Domain of High Sensitivity

The burgeoning advances in high-throughput technologies have posed a great challenge to the identification of novel biomarkers for diagnosing, by contemporary models and methods, through bioinformatics-driven analysis. Diagnostic performance metrics such as the partial area under the <inline-form...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Manuel Franco, Juana-María Vivo
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/ac7ba9ebfd6949f59103c075332c5fa3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The burgeoning advances in high-throughput technologies have posed a great challenge to the identification of novel biomarkers for diagnosing, by contemporary models and methods, through bioinformatics-driven analysis. Diagnostic performance metrics such as the partial area under the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>O</mi><mi>C</mi></mrow></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mi>A</mi><mi>U</mi><mi>C</mi></mrow></semantics></math></inline-formula>) indexes exhibit limitations to analysing genomic data. Among other issues, the inability to differentiate between biomarkers whose <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>O</mi><mi>C</mi></mrow></semantics></math></inline-formula> curves cross each other with the same <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mi>A</mi><mi>U</mi><mi>C</mi></mrow></semantics></math></inline-formula> value, the inappropriate expression of non-concave <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>O</mi><mi>C</mi></mrow></semantics></math></inline-formula> curves, and the lack of a convenient interpretation, restrict their use in practice. Here, we have proposed the fitted partial area index (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mi>p</mi><mi>A</mi><mi>U</mi><mi>C</mi></mrow></semantics></math></inline-formula>), which is computable through an algorithm valid for any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>O</mi><mi>C</mi></mrow></semantics></math></inline-formula> curve shape, as an alternative performance summary for the evaluation of highly sensitive biomarkers. The proposed approach is based on fitter upper and lower bounds of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mi>A</mi><mi>U</mi><mi>C</mi></mrow></semantics></math></inline-formula> in a high-sensitivity region. Through variance estimates, simulations, and case studies for diagnosing leukaemia, and ovarian and colon cancers, we have proven the usefulness of the proposed metric in terms of restoring the interpretation and improving diagnostic accuracy. It is robust and feasible even when the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>O</mi><mi>C</mi></mrow></semantics></math></inline-formula> curve shows hooks, and solves performance ties between competitive biomarkers.