Predicting Antimicrobial Resistance Using Partial Genome Alignments
Antimicrobial resistance causes thousands of deaths annually worldwide. Understanding the regions of the genome that are involved in antimicrobial resistance is important for developing mitigation strategies and preventing transmission.
Guardado en:
Autores principales: | D. Aytan-Aktug, M. Nguyen, P. T. L. C. Clausen, R. L. Stevens, F. M. Aarestrup, O. Lund, J. J. Davis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/acaa3d5085a343a99ad1b70bb349d924 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Prediction of Acquired Antimicrobial Resistance for Multiple Bacterial Species Using Neural Networks
por: D. Aytan-Aktug, et al.
Publicado: (2020) -
Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes
por: Sam Benkwitz-Bedford, et al.
Publicado: (2021) -
Genomic Diversity and Antimicrobial Resistance of Haemophilus Colonizing the Airways of Young Children with Cystic Fibrosis
por: Stephen C. Watts, et al.
Publicado: (2021) -
Antimicrobial Resistance in Agriculture
por: Sophie Thanner, et al.
Publicado: (2016) -
Correction for Tanmoy et al., “Salmonella enterica Serovar Typhi in Bangladesh: Exploration of Genomic Diversity and Antimicrobial Resistance”
por: Arif M. Tanmoy, et al.
Publicado: (2021)