An Adaptive Deep Learning Optimization Method Based on Radius of Curvature
An adaptive clamping method (SGD-MS) based on the radius of curvature is designed to alleviate the local optimal oscillation problem in deep neural network, which combines the radius of curvature of the objective function and the gradient descent of the optimizer. The radius of curvature is consider...
Enregistré dans:
Auteurs principaux: | Jiahui Zhang, Xinhao Yang, Ke Zhang, Chenrui Wen |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi Limited
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/acab22f5e532433c807e6c5f9bb9d3fc |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Feasibility of the deep learning method for estimating the ventilatory threshold with electrocardiography data
par: Kotaro Miura, et autres
Publié: (2020) -
Utilization of Nursing Defect Management Evaluation and Deep Learning in Nursing Process Reengineering Optimization
par: Yue Liu, et autres
Publié: (2021) -
Metagenomic Sequencing Analysis for Acne Using Machine Learning Methods Adapted to Single or Multiple Data
par: Yu Wang, et autres
Publié: (2021) -
Scalable and accurate deep learning with electronic health records
par: Alvin Rajkomar, et autres
Publié: (2018) -
Deep learning-enabled medical computer vision
par: Andre Esteva, et autres
Publié: (2021)