Rapid Identification of <i>Escherichia coli</i> Colistin-Resistant Strains by MALDI-TOF Mass Spectrometry
Colistin resistance is one of the major threats for global public health, requiring reliable and rapid susceptibility testing methods. The aim of this study was the evaluation of a MALDI-TOF mass spectrometry (MS) peak-based assay to distinguish colistin resistant (colR) from susceptible (colS) <...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/acacbd473dd64aa19e94ce9e316bc40e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:acacbd473dd64aa19e94ce9e316bc40e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:acacbd473dd64aa19e94ce9e316bc40e2021-11-25T18:24:16ZRapid Identification of <i>Escherichia coli</i> Colistin-Resistant Strains by MALDI-TOF Mass Spectrometry10.3390/microorganisms91122102076-2607https://doaj.org/article/acacbd473dd64aa19e94ce9e316bc40e2021-10-01T00:00:00Zhttps://www.mdpi.com/2076-2607/9/11/2210https://doaj.org/toc/2076-2607Colistin resistance is one of the major threats for global public health, requiring reliable and rapid susceptibility testing methods. The aim of this study was the evaluation of a MALDI-TOF mass spectrometry (MS) peak-based assay to distinguish colistin resistant (colR) from susceptible (colS) <i>Escherichia coli</i> strains. To this end, a classifying algorithm model (CAM) was developed, testing three different algorithms: Genetic Algorithm (GA), Supervised Neural Network (SNN) and Quick Classifier (QC). Among them, the SNN- and GA-based CAMs showed the best performances: recognition capability (RC) of 100% each one, and cross validation (CV) of 97.62% and 100%, respectively. Even if both algorithms shared similar RC and CV values, the SNN-based CAM was the best performing one, correctly identifying 67/71 (94.4%) of the <i>E. coli</i> strains collected: in point of fact, it correctly identified the greatest number of colS strains (42/43; 97.7%), despite its lower ability in identifying the colR strains (15/18; 83.3%). In conclusion, although broth microdilution remains the gold standard method for testing colistin susceptibility, the CAM represents a useful tool to rapidly screen colR and colS strains in clinical practice.Adriana CalderaroMirko ButtriniBenedetta FarinaSara MontecchiniMonica MartinelliFederica CrocamoMaria Cristina ArcangelettiCarlo ChezziFlora De ContoMDPI AGarticlecolistin resistanceMALDI-TOF MSGram-negative bacteriaBiology (General)QH301-705.5ENMicroorganisms, Vol 9, Iss 2210, p 2210 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
colistin resistance MALDI-TOF MS Gram-negative bacteria Biology (General) QH301-705.5 |
spellingShingle |
colistin resistance MALDI-TOF MS Gram-negative bacteria Biology (General) QH301-705.5 Adriana Calderaro Mirko Buttrini Benedetta Farina Sara Montecchini Monica Martinelli Federica Crocamo Maria Cristina Arcangeletti Carlo Chezzi Flora De Conto Rapid Identification of <i>Escherichia coli</i> Colistin-Resistant Strains by MALDI-TOF Mass Spectrometry |
description |
Colistin resistance is one of the major threats for global public health, requiring reliable and rapid susceptibility testing methods. The aim of this study was the evaluation of a MALDI-TOF mass spectrometry (MS) peak-based assay to distinguish colistin resistant (colR) from susceptible (colS) <i>Escherichia coli</i> strains. To this end, a classifying algorithm model (CAM) was developed, testing three different algorithms: Genetic Algorithm (GA), Supervised Neural Network (SNN) and Quick Classifier (QC). Among them, the SNN- and GA-based CAMs showed the best performances: recognition capability (RC) of 100% each one, and cross validation (CV) of 97.62% and 100%, respectively. Even if both algorithms shared similar RC and CV values, the SNN-based CAM was the best performing one, correctly identifying 67/71 (94.4%) of the <i>E. coli</i> strains collected: in point of fact, it correctly identified the greatest number of colS strains (42/43; 97.7%), despite its lower ability in identifying the colR strains (15/18; 83.3%). In conclusion, although broth microdilution remains the gold standard method for testing colistin susceptibility, the CAM represents a useful tool to rapidly screen colR and colS strains in clinical practice. |
format |
article |
author |
Adriana Calderaro Mirko Buttrini Benedetta Farina Sara Montecchini Monica Martinelli Federica Crocamo Maria Cristina Arcangeletti Carlo Chezzi Flora De Conto |
author_facet |
Adriana Calderaro Mirko Buttrini Benedetta Farina Sara Montecchini Monica Martinelli Federica Crocamo Maria Cristina Arcangeletti Carlo Chezzi Flora De Conto |
author_sort |
Adriana Calderaro |
title |
Rapid Identification of <i>Escherichia coli</i> Colistin-Resistant Strains by MALDI-TOF Mass Spectrometry |
title_short |
Rapid Identification of <i>Escherichia coli</i> Colistin-Resistant Strains by MALDI-TOF Mass Spectrometry |
title_full |
Rapid Identification of <i>Escherichia coli</i> Colistin-Resistant Strains by MALDI-TOF Mass Spectrometry |
title_fullStr |
Rapid Identification of <i>Escherichia coli</i> Colistin-Resistant Strains by MALDI-TOF Mass Spectrometry |
title_full_unstemmed |
Rapid Identification of <i>Escherichia coli</i> Colistin-Resistant Strains by MALDI-TOF Mass Spectrometry |
title_sort |
rapid identification of <i>escherichia coli</i> colistin-resistant strains by maldi-tof mass spectrometry |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/acacbd473dd64aa19e94ce9e316bc40e |
work_keys_str_mv |
AT adrianacalderaro rapididentificationofiescherichiacoliicolistinresistantstrainsbymalditofmassspectrometry AT mirkobuttrini rapididentificationofiescherichiacoliicolistinresistantstrainsbymalditofmassspectrometry AT benedettafarina rapididentificationofiescherichiacoliicolistinresistantstrainsbymalditofmassspectrometry AT saramontecchini rapididentificationofiescherichiacoliicolistinresistantstrainsbymalditofmassspectrometry AT monicamartinelli rapididentificationofiescherichiacoliicolistinresistantstrainsbymalditofmassspectrometry AT federicacrocamo rapididentificationofiescherichiacoliicolistinresistantstrainsbymalditofmassspectrometry AT mariacristinaarcangeletti rapididentificationofiescherichiacoliicolistinresistantstrainsbymalditofmassspectrometry AT carlochezzi rapididentificationofiescherichiacoliicolistinresistantstrainsbymalditofmassspectrometry AT floradeconto rapididentificationofiescherichiacoliicolistinresistantstrainsbymalditofmassspectrometry |
_version_ |
1718411217613094912 |