Rapid Identification of <i>Escherichia coli</i> Colistin-Resistant Strains by MALDI-TOF Mass Spectrometry

Colistin resistance is one of the major threats for global public health, requiring reliable and rapid susceptibility testing methods. The aim of this study was the evaluation of a MALDI-TOF mass spectrometry (MS) peak-based assay to distinguish colistin resistant (colR) from susceptible (colS) <...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Adriana Calderaro, Mirko Buttrini, Benedetta Farina, Sara Montecchini, Monica Martinelli, Federica Crocamo, Maria Cristina Arcangeletti, Carlo Chezzi, Flora De Conto
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/acacbd473dd64aa19e94ce9e316bc40e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:acacbd473dd64aa19e94ce9e316bc40e
record_format dspace
spelling oai:doaj.org-article:acacbd473dd64aa19e94ce9e316bc40e2021-11-25T18:24:16ZRapid Identification of <i>Escherichia coli</i> Colistin-Resistant Strains by MALDI-TOF Mass Spectrometry10.3390/microorganisms91122102076-2607https://doaj.org/article/acacbd473dd64aa19e94ce9e316bc40e2021-10-01T00:00:00Zhttps://www.mdpi.com/2076-2607/9/11/2210https://doaj.org/toc/2076-2607Colistin resistance is one of the major threats for global public health, requiring reliable and rapid susceptibility testing methods. The aim of this study was the evaluation of a MALDI-TOF mass spectrometry (MS) peak-based assay to distinguish colistin resistant (colR) from susceptible (colS) <i>Escherichia coli</i> strains. To this end, a classifying algorithm model (CAM) was developed, testing three different algorithms: Genetic Algorithm (GA), Supervised Neural Network (SNN) and Quick Classifier (QC). Among them, the SNN- and GA-based CAMs showed the best performances: recognition capability (RC) of 100% each one, and cross validation (CV) of 97.62% and 100%, respectively. Even if both algorithms shared similar RC and CV values, the SNN-based CAM was the best performing one, correctly identifying 67/71 (94.4%) of the <i>E. coli</i> strains collected: in point of fact, it correctly identified the greatest number of colS strains (42/43; 97.7%), despite its lower ability in identifying the colR strains (15/18; 83.3%). In conclusion, although broth microdilution remains the gold standard method for testing colistin susceptibility, the CAM represents a useful tool to rapidly screen colR and colS strains in clinical practice.Adriana CalderaroMirko ButtriniBenedetta FarinaSara MontecchiniMonica MartinelliFederica CrocamoMaria Cristina ArcangelettiCarlo ChezziFlora De ContoMDPI AGarticlecolistin resistanceMALDI-TOF MSGram-negative bacteriaBiology (General)QH301-705.5ENMicroorganisms, Vol 9, Iss 2210, p 2210 (2021)
institution DOAJ
collection DOAJ
language EN
topic colistin resistance
MALDI-TOF MS
Gram-negative bacteria
Biology (General)
QH301-705.5
spellingShingle colistin resistance
MALDI-TOF MS
Gram-negative bacteria
Biology (General)
QH301-705.5
Adriana Calderaro
Mirko Buttrini
Benedetta Farina
Sara Montecchini
Monica Martinelli
Federica Crocamo
Maria Cristina Arcangeletti
Carlo Chezzi
Flora De Conto
Rapid Identification of <i>Escherichia coli</i> Colistin-Resistant Strains by MALDI-TOF Mass Spectrometry
description Colistin resistance is one of the major threats for global public health, requiring reliable and rapid susceptibility testing methods. The aim of this study was the evaluation of a MALDI-TOF mass spectrometry (MS) peak-based assay to distinguish colistin resistant (colR) from susceptible (colS) <i>Escherichia coli</i> strains. To this end, a classifying algorithm model (CAM) was developed, testing three different algorithms: Genetic Algorithm (GA), Supervised Neural Network (SNN) and Quick Classifier (QC). Among them, the SNN- and GA-based CAMs showed the best performances: recognition capability (RC) of 100% each one, and cross validation (CV) of 97.62% and 100%, respectively. Even if both algorithms shared similar RC and CV values, the SNN-based CAM was the best performing one, correctly identifying 67/71 (94.4%) of the <i>E. coli</i> strains collected: in point of fact, it correctly identified the greatest number of colS strains (42/43; 97.7%), despite its lower ability in identifying the colR strains (15/18; 83.3%). In conclusion, although broth microdilution remains the gold standard method for testing colistin susceptibility, the CAM represents a useful tool to rapidly screen colR and colS strains in clinical practice.
format article
author Adriana Calderaro
Mirko Buttrini
Benedetta Farina
Sara Montecchini
Monica Martinelli
Federica Crocamo
Maria Cristina Arcangeletti
Carlo Chezzi
Flora De Conto
author_facet Adriana Calderaro
Mirko Buttrini
Benedetta Farina
Sara Montecchini
Monica Martinelli
Federica Crocamo
Maria Cristina Arcangeletti
Carlo Chezzi
Flora De Conto
author_sort Adriana Calderaro
title Rapid Identification of <i>Escherichia coli</i> Colistin-Resistant Strains by MALDI-TOF Mass Spectrometry
title_short Rapid Identification of <i>Escherichia coli</i> Colistin-Resistant Strains by MALDI-TOF Mass Spectrometry
title_full Rapid Identification of <i>Escherichia coli</i> Colistin-Resistant Strains by MALDI-TOF Mass Spectrometry
title_fullStr Rapid Identification of <i>Escherichia coli</i> Colistin-Resistant Strains by MALDI-TOF Mass Spectrometry
title_full_unstemmed Rapid Identification of <i>Escherichia coli</i> Colistin-Resistant Strains by MALDI-TOF Mass Spectrometry
title_sort rapid identification of <i>escherichia coli</i> colistin-resistant strains by maldi-tof mass spectrometry
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/acacbd473dd64aa19e94ce9e316bc40e
work_keys_str_mv AT adrianacalderaro rapididentificationofiescherichiacoliicolistinresistantstrainsbymalditofmassspectrometry
AT mirkobuttrini rapididentificationofiescherichiacoliicolistinresistantstrainsbymalditofmassspectrometry
AT benedettafarina rapididentificationofiescherichiacoliicolistinresistantstrainsbymalditofmassspectrometry
AT saramontecchini rapididentificationofiescherichiacoliicolistinresistantstrainsbymalditofmassspectrometry
AT monicamartinelli rapididentificationofiescherichiacoliicolistinresistantstrainsbymalditofmassspectrometry
AT federicacrocamo rapididentificationofiescherichiacoliicolistinresistantstrainsbymalditofmassspectrometry
AT mariacristinaarcangeletti rapididentificationofiescherichiacoliicolistinresistantstrainsbymalditofmassspectrometry
AT carlochezzi rapididentificationofiescherichiacoliicolistinresistantstrainsbymalditofmassspectrometry
AT floradeconto rapididentificationofiescherichiacoliicolistinresistantstrainsbymalditofmassspectrometry
_version_ 1718411217613094912