A practical strategy to subcutaneous administered in-situ gelling co-delivery system of arsenic and retinoic acid for the treatment of acute promyelocytic leukemia

Arsenic trioxide (ATO) combined with all trans retinoic acid (ATRA) is the first choice for the treatment of low and medium risk acute promyelocytic leukemia (APL). Clinical studies reported that the combination of ATO and ATRA could achieve a significant curative effect. However, the retinoic acid...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xiao Liu, Weiwei Yin, Andy Samuel Widjaya, Yueying Yang, Yunhu Liu, Yanyan Jiang
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/acfc2041133b4d6b940e4682b557c104
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:acfc2041133b4d6b940e4682b557c104
record_format dspace
spelling oai:doaj.org-article:acfc2041133b4d6b940e4682b557c1042021-11-20T04:57:43ZA practical strategy to subcutaneous administered in-situ gelling co-delivery system of arsenic and retinoic acid for the treatment of acute promyelocytic leukemia1818-087610.1016/j.ajps.2021.07.003https://doaj.org/article/acfc2041133b4d6b940e4682b557c1042021-09-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1818087621000581https://doaj.org/toc/1818-0876Arsenic trioxide (ATO) combined with all trans retinoic acid (ATRA) is the first choice for the treatment of low and medium risk acute promyelocytic leukemia (APL). Clinical studies reported that the combination of ATO and ATRA could achieve a significant curative effect. However, the retinoic acid syndrome, serious drug resistance and the short half-life in vivo which lead to frequent and large dose administration limit the application of ATRA. In addition, the preparations of arsenic are conventional injections and tablets in clinic, which has poor patients' compliance caused by frequent long-term administration and serious side effects. In order to overcome the above limitations, a phospholipid phase separation gel (PPSG) loaded with ATO and ATRA was developed. ATO+ATRA-PPSG (AAP), as a biodegradable sustained-release delivery system, was the first achievement of co-delivery of hydrophilic ATO and lipophilic ATRA with high drug loading which is the main problem in the application of nano preparation. The prepared PPSG displayed high safety and biocompatibility. The drug in PPSG was released slowly and continuously in vivo and in vitro for up to 10 d, which could reduce the side effects caused by the fluctuation of blood drug concentration and solve the problem of the long treatment cycle and frequent administration. In vivo pharmacokinetics depicted that PPSG could improve the bioavailability, decrease the peak concentration, and prolong the t1/2 of ATO and ATRA. Particularly, AAP significantly inhibited the tumor volume, extended the survival period of tumor-bearing mice, and promoted the differentiation of APL cells into normal cells. Therefore, ATO+ATRA-PPSG not only could co-load hydrophilic ATO and lipophilic ATRA according to the clinical dosage, but also possessed the sustained-release and long-acting treatment effect which was expected to reduce administration time and ameliorate compliance of patients. Thus, it had great potential for clinical transformation and application.Xiao LiuWeiwei YinAndy Samuel WidjayaYueying YangYunhu LiuYanyan JiangElsevierarticleArsenic trioxideAll trans retinoic acidPhospholipid phase separation gelSustained-releaseBioavailabilityComplianceTherapeutics. PharmacologyRM1-950ENAsian Journal of Pharmaceutical Sciences, Vol 16, Iss 5, Pp 633-642 (2021)
institution DOAJ
collection DOAJ
language EN
topic Arsenic trioxide
All trans retinoic acid
Phospholipid phase separation gel
Sustained-release
Bioavailability
Compliance
Therapeutics. Pharmacology
RM1-950
spellingShingle Arsenic trioxide
All trans retinoic acid
Phospholipid phase separation gel
Sustained-release
Bioavailability
Compliance
Therapeutics. Pharmacology
RM1-950
Xiao Liu
Weiwei Yin
Andy Samuel Widjaya
Yueying Yang
Yunhu Liu
Yanyan Jiang
A practical strategy to subcutaneous administered in-situ gelling co-delivery system of arsenic and retinoic acid for the treatment of acute promyelocytic leukemia
description Arsenic trioxide (ATO) combined with all trans retinoic acid (ATRA) is the first choice for the treatment of low and medium risk acute promyelocytic leukemia (APL). Clinical studies reported that the combination of ATO and ATRA could achieve a significant curative effect. However, the retinoic acid syndrome, serious drug resistance and the short half-life in vivo which lead to frequent and large dose administration limit the application of ATRA. In addition, the preparations of arsenic are conventional injections and tablets in clinic, which has poor patients' compliance caused by frequent long-term administration and serious side effects. In order to overcome the above limitations, a phospholipid phase separation gel (PPSG) loaded with ATO and ATRA was developed. ATO+ATRA-PPSG (AAP), as a biodegradable sustained-release delivery system, was the first achievement of co-delivery of hydrophilic ATO and lipophilic ATRA with high drug loading which is the main problem in the application of nano preparation. The prepared PPSG displayed high safety and biocompatibility. The drug in PPSG was released slowly and continuously in vivo and in vitro for up to 10 d, which could reduce the side effects caused by the fluctuation of blood drug concentration and solve the problem of the long treatment cycle and frequent administration. In vivo pharmacokinetics depicted that PPSG could improve the bioavailability, decrease the peak concentration, and prolong the t1/2 of ATO and ATRA. Particularly, AAP significantly inhibited the tumor volume, extended the survival period of tumor-bearing mice, and promoted the differentiation of APL cells into normal cells. Therefore, ATO+ATRA-PPSG not only could co-load hydrophilic ATO and lipophilic ATRA according to the clinical dosage, but also possessed the sustained-release and long-acting treatment effect which was expected to reduce administration time and ameliorate compliance of patients. Thus, it had great potential for clinical transformation and application.
format article
author Xiao Liu
Weiwei Yin
Andy Samuel Widjaya
Yueying Yang
Yunhu Liu
Yanyan Jiang
author_facet Xiao Liu
Weiwei Yin
Andy Samuel Widjaya
Yueying Yang
Yunhu Liu
Yanyan Jiang
author_sort Xiao Liu
title A practical strategy to subcutaneous administered in-situ gelling co-delivery system of arsenic and retinoic acid for the treatment of acute promyelocytic leukemia
title_short A practical strategy to subcutaneous administered in-situ gelling co-delivery system of arsenic and retinoic acid for the treatment of acute promyelocytic leukemia
title_full A practical strategy to subcutaneous administered in-situ gelling co-delivery system of arsenic and retinoic acid for the treatment of acute promyelocytic leukemia
title_fullStr A practical strategy to subcutaneous administered in-situ gelling co-delivery system of arsenic and retinoic acid for the treatment of acute promyelocytic leukemia
title_full_unstemmed A practical strategy to subcutaneous administered in-situ gelling co-delivery system of arsenic and retinoic acid for the treatment of acute promyelocytic leukemia
title_sort practical strategy to subcutaneous administered in-situ gelling co-delivery system of arsenic and retinoic acid for the treatment of acute promyelocytic leukemia
publisher Elsevier
publishDate 2021
url https://doaj.org/article/acfc2041133b4d6b940e4682b557c104
work_keys_str_mv AT xiaoliu apracticalstrategytosubcutaneousadministeredinsitugellingcodeliverysystemofarsenicandretinoicacidforthetreatmentofacutepromyelocyticleukemia
AT weiweiyin apracticalstrategytosubcutaneousadministeredinsitugellingcodeliverysystemofarsenicandretinoicacidforthetreatmentofacutepromyelocyticleukemia
AT andysamuelwidjaya apracticalstrategytosubcutaneousadministeredinsitugellingcodeliverysystemofarsenicandretinoicacidforthetreatmentofacutepromyelocyticleukemia
AT yueyingyang apracticalstrategytosubcutaneousadministeredinsitugellingcodeliverysystemofarsenicandretinoicacidforthetreatmentofacutepromyelocyticleukemia
AT yunhuliu apracticalstrategytosubcutaneousadministeredinsitugellingcodeliverysystemofarsenicandretinoicacidforthetreatmentofacutepromyelocyticleukemia
AT yanyanjiang apracticalstrategytosubcutaneousadministeredinsitugellingcodeliverysystemofarsenicandretinoicacidforthetreatmentofacutepromyelocyticleukemia
AT xiaoliu practicalstrategytosubcutaneousadministeredinsitugellingcodeliverysystemofarsenicandretinoicacidforthetreatmentofacutepromyelocyticleukemia
AT weiweiyin practicalstrategytosubcutaneousadministeredinsitugellingcodeliverysystemofarsenicandretinoicacidforthetreatmentofacutepromyelocyticleukemia
AT andysamuelwidjaya practicalstrategytosubcutaneousadministeredinsitugellingcodeliverysystemofarsenicandretinoicacidforthetreatmentofacutepromyelocyticleukemia
AT yueyingyang practicalstrategytosubcutaneousadministeredinsitugellingcodeliverysystemofarsenicandretinoicacidforthetreatmentofacutepromyelocyticleukemia
AT yunhuliu practicalstrategytosubcutaneousadministeredinsitugellingcodeliverysystemofarsenicandretinoicacidforthetreatmentofacutepromyelocyticleukemia
AT yanyanjiang practicalstrategytosubcutaneousadministeredinsitugellingcodeliverysystemofarsenicandretinoicacidforthetreatmentofacutepromyelocyticleukemia
_version_ 1718419732974010368