Upregulation of the Adhesin Gene <italic toggle="yes">EPA1</italic> Mediated by <italic toggle="yes">PDR1</italic> in <named-content content-type="genus-species">Candida glabrata</named-content> Leads to Enhanced Host Colonization

ABSTRACT Candida glabrata is the second most common Candida species causing disseminated infection, after C. albicans. C. glabrata is intrinsically less susceptible to the widely used azole antifungal drugs and quickly develops secondary resistance. Resistance typically relies on drug efflux with tr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Luis A. Vale-Silva, Beat Moeckli, Riccardo Torelli, Brunella Posteraro, Maurizio Sanguinetti, Dominique Sanglard
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2016
Materias:
Acceso en línea:https://doaj.org/article/acfe545a94b34cb2ae2a47951f821e5a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:acfe545a94b34cb2ae2a47951f821e5a
record_format dspace
spelling oai:doaj.org-article:acfe545a94b34cb2ae2a47951f821e5a2021-11-15T15:21:23ZUpregulation of the Adhesin Gene <italic toggle="yes">EPA1</italic> Mediated by <italic toggle="yes">PDR1</italic> in <named-content content-type="genus-species">Candida glabrata</named-content> Leads to Enhanced Host Colonization10.1128/mSphere.00065-152379-5042https://doaj.org/article/acfe545a94b34cb2ae2a47951f821e5a2016-04-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSphere.00065-15https://doaj.org/toc/2379-5042ABSTRACT Candida glabrata is the second most common Candida species causing disseminated infection, after C. albicans. C. glabrata is intrinsically less susceptible to the widely used azole antifungal drugs and quickly develops secondary resistance. Resistance typically relies on drug efflux with transporters regulated by the transcription factor Pdr1. Gain-of-function (GOF) mutations in PDR1 lead to a hyperactive state and thus efflux transporter upregulation. Our laboratory has characterized a collection of C. glabrata clinical isolates in which azole resistance was found to correlate with increased virulence in vivo. Contributing phenotypes were the evasion of adhesion and phagocytosis by macrophages and an increased adhesion to epithelial cells. These phenotypes were found to be dependent on PDR1 GOF mutation and/or C. glabrata strain background. In the search for the molecular effectors, we found that PDR1 hyperactivity leads to overexpression of specific cell wall adhesins of C. glabrata. Further study revealed that EPA1 regulation, in particular, explained the increase in adherence to epithelial cells. Deleting EPA1 eliminates the increase in adherence in an in vitro model of interaction with epithelial cells. In a murine model of urinary tract infection, PDR1 hyperactivity conferred increased ability to colonize the bladder and kidneys in an EPA1-dependent way. In conclusion, this study establishes a relationship between PDR1 and the regulation of cell wall adhesins, an important virulence attribute of C. glabrata. Furthermore, our data show that PDR1 hyperactivity mediates increased adherence to host epithelial tissues both in vitro and in vivo through upregulation of the adhesin gene EPA1. IMPORTANCE Candida glabrata is an important fungal pathogen in human diseases and is also rapidly acquiring drug resistance. Drug resistance can be mediated by the transcriptional activator PDR1, and this results in the upregulation of multidrug transporters. Intriguingly, this resistance mechanism is associated in C. glabrata with increased virulence in animal models and also with increased adherence to specific host cell types. The C. glabrata adhesin gene EPA1 is a major contributor of virulence and adherence to host cells. Here, we show that EPA1 expression is controlled by PDR1 independently of subtelomeric silencing, a known EPA1 regulation mechanism. Thus, a relationship exists between PDR1, EPA1 expression, and adherence to host cells, which is critical for efficient virulence. Our results demonstrate that acquisition of drug resistance is beneficial for C. glabrata in fungus-host relationships. These findings further highlight the challenges of the therapeutic management of C. glabrata infections in human patients.Luis A. Vale-SilvaBeat MoeckliRiccardo TorelliBrunella PosteraroMaurizio SanguinettiDominique SanglardAmerican Society for MicrobiologyarticleCandidadrug resistanceadherencefungus-host interactionsMicrobiologyQR1-502ENmSphere, Vol 1, Iss 2 (2016)
institution DOAJ
collection DOAJ
language EN
topic Candida
drug resistance
adherence
fungus-host interactions
Microbiology
QR1-502
spellingShingle Candida
drug resistance
adherence
fungus-host interactions
Microbiology
QR1-502
Luis A. Vale-Silva
Beat Moeckli
Riccardo Torelli
Brunella Posteraro
Maurizio Sanguinetti
Dominique Sanglard
Upregulation of the Adhesin Gene <italic toggle="yes">EPA1</italic> Mediated by <italic toggle="yes">PDR1</italic> in <named-content content-type="genus-species">Candida glabrata</named-content> Leads to Enhanced Host Colonization
description ABSTRACT Candida glabrata is the second most common Candida species causing disseminated infection, after C. albicans. C. glabrata is intrinsically less susceptible to the widely used azole antifungal drugs and quickly develops secondary resistance. Resistance typically relies on drug efflux with transporters regulated by the transcription factor Pdr1. Gain-of-function (GOF) mutations in PDR1 lead to a hyperactive state and thus efflux transporter upregulation. Our laboratory has characterized a collection of C. glabrata clinical isolates in which azole resistance was found to correlate with increased virulence in vivo. Contributing phenotypes were the evasion of adhesion and phagocytosis by macrophages and an increased adhesion to epithelial cells. These phenotypes were found to be dependent on PDR1 GOF mutation and/or C. glabrata strain background. In the search for the molecular effectors, we found that PDR1 hyperactivity leads to overexpression of specific cell wall adhesins of C. glabrata. Further study revealed that EPA1 regulation, in particular, explained the increase in adherence to epithelial cells. Deleting EPA1 eliminates the increase in adherence in an in vitro model of interaction with epithelial cells. In a murine model of urinary tract infection, PDR1 hyperactivity conferred increased ability to colonize the bladder and kidneys in an EPA1-dependent way. In conclusion, this study establishes a relationship between PDR1 and the regulation of cell wall adhesins, an important virulence attribute of C. glabrata. Furthermore, our data show that PDR1 hyperactivity mediates increased adherence to host epithelial tissues both in vitro and in vivo through upregulation of the adhesin gene EPA1. IMPORTANCE Candida glabrata is an important fungal pathogen in human diseases and is also rapidly acquiring drug resistance. Drug resistance can be mediated by the transcriptional activator PDR1, and this results in the upregulation of multidrug transporters. Intriguingly, this resistance mechanism is associated in C. glabrata with increased virulence in animal models and also with increased adherence to specific host cell types. The C. glabrata adhesin gene EPA1 is a major contributor of virulence and adherence to host cells. Here, we show that EPA1 expression is controlled by PDR1 independently of subtelomeric silencing, a known EPA1 regulation mechanism. Thus, a relationship exists between PDR1, EPA1 expression, and adherence to host cells, which is critical for efficient virulence. Our results demonstrate that acquisition of drug resistance is beneficial for C. glabrata in fungus-host relationships. These findings further highlight the challenges of the therapeutic management of C. glabrata infections in human patients.
format article
author Luis A. Vale-Silva
Beat Moeckli
Riccardo Torelli
Brunella Posteraro
Maurizio Sanguinetti
Dominique Sanglard
author_facet Luis A. Vale-Silva
Beat Moeckli
Riccardo Torelli
Brunella Posteraro
Maurizio Sanguinetti
Dominique Sanglard
author_sort Luis A. Vale-Silva
title Upregulation of the Adhesin Gene <italic toggle="yes">EPA1</italic> Mediated by <italic toggle="yes">PDR1</italic> in <named-content content-type="genus-species">Candida glabrata</named-content> Leads to Enhanced Host Colonization
title_short Upregulation of the Adhesin Gene <italic toggle="yes">EPA1</italic> Mediated by <italic toggle="yes">PDR1</italic> in <named-content content-type="genus-species">Candida glabrata</named-content> Leads to Enhanced Host Colonization
title_full Upregulation of the Adhesin Gene <italic toggle="yes">EPA1</italic> Mediated by <italic toggle="yes">PDR1</italic> in <named-content content-type="genus-species">Candida glabrata</named-content> Leads to Enhanced Host Colonization
title_fullStr Upregulation of the Adhesin Gene <italic toggle="yes">EPA1</italic> Mediated by <italic toggle="yes">PDR1</italic> in <named-content content-type="genus-species">Candida glabrata</named-content> Leads to Enhanced Host Colonization
title_full_unstemmed Upregulation of the Adhesin Gene <italic toggle="yes">EPA1</italic> Mediated by <italic toggle="yes">PDR1</italic> in <named-content content-type="genus-species">Candida glabrata</named-content> Leads to Enhanced Host Colonization
title_sort upregulation of the adhesin gene <italic toggle="yes">epa1</italic> mediated by <italic toggle="yes">pdr1</italic> in <named-content content-type="genus-species">candida glabrata</named-content> leads to enhanced host colonization
publisher American Society for Microbiology
publishDate 2016
url https://doaj.org/article/acfe545a94b34cb2ae2a47951f821e5a
work_keys_str_mv AT luisavalesilva upregulationoftheadhesingeneitalictoggleyesepa1italicmediatedbyitalictoggleyespdr1italicinnamedcontentcontenttypegenusspeciescandidaglabratanamedcontentleadstoenhancedhostcolonization
AT beatmoeckli upregulationoftheadhesingeneitalictoggleyesepa1italicmediatedbyitalictoggleyespdr1italicinnamedcontentcontenttypegenusspeciescandidaglabratanamedcontentleadstoenhancedhostcolonization
AT riccardotorelli upregulationoftheadhesingeneitalictoggleyesepa1italicmediatedbyitalictoggleyespdr1italicinnamedcontentcontenttypegenusspeciescandidaglabratanamedcontentleadstoenhancedhostcolonization
AT brunellaposteraro upregulationoftheadhesingeneitalictoggleyesepa1italicmediatedbyitalictoggleyespdr1italicinnamedcontentcontenttypegenusspeciescandidaglabratanamedcontentleadstoenhancedhostcolonization
AT mauriziosanguinetti upregulationoftheadhesingeneitalictoggleyesepa1italicmediatedbyitalictoggleyespdr1italicinnamedcontentcontenttypegenusspeciescandidaglabratanamedcontentleadstoenhancedhostcolonization
AT dominiquesanglard upregulationoftheadhesingeneitalictoggleyesepa1italicmediatedbyitalictoggleyespdr1italicinnamedcontentcontenttypegenusspeciescandidaglabratanamedcontentleadstoenhancedhostcolonization
_version_ 1718428150694674432