Molecular Strategies for Intensity-Dependent Olfactory Processing in Caenorhabditis elegans

Various odorants trigger complex animal behaviors across species in both quality- and quantity-dependent manners. However, how the intensity of olfactory input is encoded remains largely unknown. Here we report that isoamyl alcohol (IAA) induces bi-directional currents through a Gα- guanylate cyclas...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hankui Cheng, Yu Liu, Yadan Xue, Jiajie Shao, Zhibing Tan, Siyan Liu, Shumin Duan, Lijun Kang
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/ad081f0ca0de45eba9751e1c95a4739e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ad081f0ca0de45eba9751e1c95a4739e
record_format dspace
spelling oai:doaj.org-article:ad081f0ca0de45eba9751e1c95a4739e2021-11-04T08:57:10ZMolecular Strategies for Intensity-Dependent Olfactory Processing in Caenorhabditis elegans1662-509910.3389/fnmol.2021.748214https://doaj.org/article/ad081f0ca0de45eba9751e1c95a4739e2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fnmol.2021.748214/fullhttps://doaj.org/toc/1662-5099Various odorants trigger complex animal behaviors across species in both quality- and quantity-dependent manners. However, how the intensity of olfactory input is encoded remains largely unknown. Here we report that isoamyl alcohol (IAA) induces bi-directional currents through a Gα- guanylate cyclase (GC)- cGMP signaling pathway in Caenorhabditis elegans olfactory neuron amphid wing “C” cell (AWC), while two opposite cGMP signaling pathways are responsible for odor-sensing in olfactory neuron amphid wing “B” cell (AWB): (1) a depolarizing Gα (GPA-3)- phosphodiesterase (PDE) – cGMP pathway which can be activated by low concentrations of isoamyl alcohol (IAA), and (2) a hyperpolarizing Gα (ODR-3)- GC- cGMP pathway sensing high concentrations of IAA. Besides, IAA induces Gα (ODR-3)-TRPV(OSM-9)-dependent currents in amphid wing “A” cell (AWA) and amphid neuron “H” cell with single ciliated sensory ending (ASH) neurons with different thresholds. Our results demonstrate that an elaborate combination of multiple signaling machineries encode the intensity of olfactory input, shedding light on understanding the molecular strategies on sensory transduction.Hankui ChengHankui ChengHankui ChengYu LiuYu LiuYu LiuYadan XueYadan XueJiajie ShaoJiajie ShaoZhibing TanZhibing TanSiyan LiuSiyan LiuSiyan LiuShumin DuanShumin DuanShumin DuanShumin DuanLijun KangLijun KangLijun KangFrontiers Media S.A.articleolfactory processingcGMPintensity dependencesensory neuroncalcium imaging assayNeurosciences. Biological psychiatry. NeuropsychiatryRC321-571ENFrontiers in Molecular Neuroscience, Vol 14 (2021)
institution DOAJ
collection DOAJ
language EN
topic olfactory processing
cGMP
intensity dependence
sensory neuron
calcium imaging assay
Neurosciences. Biological psychiatry. Neuropsychiatry
RC321-571
spellingShingle olfactory processing
cGMP
intensity dependence
sensory neuron
calcium imaging assay
Neurosciences. Biological psychiatry. Neuropsychiatry
RC321-571
Hankui Cheng
Hankui Cheng
Hankui Cheng
Yu Liu
Yu Liu
Yu Liu
Yadan Xue
Yadan Xue
Jiajie Shao
Jiajie Shao
Zhibing Tan
Zhibing Tan
Siyan Liu
Siyan Liu
Siyan Liu
Shumin Duan
Shumin Duan
Shumin Duan
Shumin Duan
Lijun Kang
Lijun Kang
Lijun Kang
Molecular Strategies for Intensity-Dependent Olfactory Processing in Caenorhabditis elegans
description Various odorants trigger complex animal behaviors across species in both quality- and quantity-dependent manners. However, how the intensity of olfactory input is encoded remains largely unknown. Here we report that isoamyl alcohol (IAA) induces bi-directional currents through a Gα- guanylate cyclase (GC)- cGMP signaling pathway in Caenorhabditis elegans olfactory neuron amphid wing “C” cell (AWC), while two opposite cGMP signaling pathways are responsible for odor-sensing in olfactory neuron amphid wing “B” cell (AWB): (1) a depolarizing Gα (GPA-3)- phosphodiesterase (PDE) – cGMP pathway which can be activated by low concentrations of isoamyl alcohol (IAA), and (2) a hyperpolarizing Gα (ODR-3)- GC- cGMP pathway sensing high concentrations of IAA. Besides, IAA induces Gα (ODR-3)-TRPV(OSM-9)-dependent currents in amphid wing “A” cell (AWA) and amphid neuron “H” cell with single ciliated sensory ending (ASH) neurons with different thresholds. Our results demonstrate that an elaborate combination of multiple signaling machineries encode the intensity of olfactory input, shedding light on understanding the molecular strategies on sensory transduction.
format article
author Hankui Cheng
Hankui Cheng
Hankui Cheng
Yu Liu
Yu Liu
Yu Liu
Yadan Xue
Yadan Xue
Jiajie Shao
Jiajie Shao
Zhibing Tan
Zhibing Tan
Siyan Liu
Siyan Liu
Siyan Liu
Shumin Duan
Shumin Duan
Shumin Duan
Shumin Duan
Lijun Kang
Lijun Kang
Lijun Kang
author_facet Hankui Cheng
Hankui Cheng
Hankui Cheng
Yu Liu
Yu Liu
Yu Liu
Yadan Xue
Yadan Xue
Jiajie Shao
Jiajie Shao
Zhibing Tan
Zhibing Tan
Siyan Liu
Siyan Liu
Siyan Liu
Shumin Duan
Shumin Duan
Shumin Duan
Shumin Duan
Lijun Kang
Lijun Kang
Lijun Kang
author_sort Hankui Cheng
title Molecular Strategies for Intensity-Dependent Olfactory Processing in Caenorhabditis elegans
title_short Molecular Strategies for Intensity-Dependent Olfactory Processing in Caenorhabditis elegans
title_full Molecular Strategies for Intensity-Dependent Olfactory Processing in Caenorhabditis elegans
title_fullStr Molecular Strategies for Intensity-Dependent Olfactory Processing in Caenorhabditis elegans
title_full_unstemmed Molecular Strategies for Intensity-Dependent Olfactory Processing in Caenorhabditis elegans
title_sort molecular strategies for intensity-dependent olfactory processing in caenorhabditis elegans
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/ad081f0ca0de45eba9751e1c95a4739e
work_keys_str_mv AT hankuicheng molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT hankuicheng molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT hankuicheng molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT yuliu molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT yuliu molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT yuliu molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT yadanxue molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT yadanxue molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT jiajieshao molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT jiajieshao molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT zhibingtan molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT zhibingtan molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT siyanliu molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT siyanliu molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT siyanliu molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT shuminduan molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT shuminduan molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT shuminduan molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT shuminduan molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT lijunkang molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT lijunkang molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
AT lijunkang molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans
_version_ 1718444983224107008