Molecular Strategies for Intensity-Dependent Olfactory Processing in Caenorhabditis elegans
Various odorants trigger complex animal behaviors across species in both quality- and quantity-dependent manners. However, how the intensity of olfactory input is encoded remains largely unknown. Here we report that isoamyl alcohol (IAA) induces bi-directional currents through a Gα- guanylate cyclas...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ad081f0ca0de45eba9751e1c95a4739e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ad081f0ca0de45eba9751e1c95a4739e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ad081f0ca0de45eba9751e1c95a4739e2021-11-04T08:57:10ZMolecular Strategies for Intensity-Dependent Olfactory Processing in Caenorhabditis elegans1662-509910.3389/fnmol.2021.748214https://doaj.org/article/ad081f0ca0de45eba9751e1c95a4739e2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fnmol.2021.748214/fullhttps://doaj.org/toc/1662-5099Various odorants trigger complex animal behaviors across species in both quality- and quantity-dependent manners. However, how the intensity of olfactory input is encoded remains largely unknown. Here we report that isoamyl alcohol (IAA) induces bi-directional currents through a Gα- guanylate cyclase (GC)- cGMP signaling pathway in Caenorhabditis elegans olfactory neuron amphid wing “C” cell (AWC), while two opposite cGMP signaling pathways are responsible for odor-sensing in olfactory neuron amphid wing “B” cell (AWB): (1) a depolarizing Gα (GPA-3)- phosphodiesterase (PDE) – cGMP pathway which can be activated by low concentrations of isoamyl alcohol (IAA), and (2) a hyperpolarizing Gα (ODR-3)- GC- cGMP pathway sensing high concentrations of IAA. Besides, IAA induces Gα (ODR-3)-TRPV(OSM-9)-dependent currents in amphid wing “A” cell (AWA) and amphid neuron “H” cell with single ciliated sensory ending (ASH) neurons with different thresholds. Our results demonstrate that an elaborate combination of multiple signaling machineries encode the intensity of olfactory input, shedding light on understanding the molecular strategies on sensory transduction.Hankui ChengHankui ChengHankui ChengYu LiuYu LiuYu LiuYadan XueYadan XueJiajie ShaoJiajie ShaoZhibing TanZhibing TanSiyan LiuSiyan LiuSiyan LiuShumin DuanShumin DuanShumin DuanShumin DuanLijun KangLijun KangLijun KangFrontiers Media S.A.articleolfactory processingcGMPintensity dependencesensory neuroncalcium imaging assayNeurosciences. Biological psychiatry. NeuropsychiatryRC321-571ENFrontiers in Molecular Neuroscience, Vol 14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
olfactory processing cGMP intensity dependence sensory neuron calcium imaging assay Neurosciences. Biological psychiatry. Neuropsychiatry RC321-571 |
spellingShingle |
olfactory processing cGMP intensity dependence sensory neuron calcium imaging assay Neurosciences. Biological psychiatry. Neuropsychiatry RC321-571 Hankui Cheng Hankui Cheng Hankui Cheng Yu Liu Yu Liu Yu Liu Yadan Xue Yadan Xue Jiajie Shao Jiajie Shao Zhibing Tan Zhibing Tan Siyan Liu Siyan Liu Siyan Liu Shumin Duan Shumin Duan Shumin Duan Shumin Duan Lijun Kang Lijun Kang Lijun Kang Molecular Strategies for Intensity-Dependent Olfactory Processing in Caenorhabditis elegans |
description |
Various odorants trigger complex animal behaviors across species in both quality- and quantity-dependent manners. However, how the intensity of olfactory input is encoded remains largely unknown. Here we report that isoamyl alcohol (IAA) induces bi-directional currents through a Gα- guanylate cyclase (GC)- cGMP signaling pathway in Caenorhabditis elegans olfactory neuron amphid wing “C” cell (AWC), while two opposite cGMP signaling pathways are responsible for odor-sensing in olfactory neuron amphid wing “B” cell (AWB): (1) a depolarizing Gα (GPA-3)- phosphodiesterase (PDE) – cGMP pathway which can be activated by low concentrations of isoamyl alcohol (IAA), and (2) a hyperpolarizing Gα (ODR-3)- GC- cGMP pathway sensing high concentrations of IAA. Besides, IAA induces Gα (ODR-3)-TRPV(OSM-9)-dependent currents in amphid wing “A” cell (AWA) and amphid neuron “H” cell with single ciliated sensory ending (ASH) neurons with different thresholds. Our results demonstrate that an elaborate combination of multiple signaling machineries encode the intensity of olfactory input, shedding light on understanding the molecular strategies on sensory transduction. |
format |
article |
author |
Hankui Cheng Hankui Cheng Hankui Cheng Yu Liu Yu Liu Yu Liu Yadan Xue Yadan Xue Jiajie Shao Jiajie Shao Zhibing Tan Zhibing Tan Siyan Liu Siyan Liu Siyan Liu Shumin Duan Shumin Duan Shumin Duan Shumin Duan Lijun Kang Lijun Kang Lijun Kang |
author_facet |
Hankui Cheng Hankui Cheng Hankui Cheng Yu Liu Yu Liu Yu Liu Yadan Xue Yadan Xue Jiajie Shao Jiajie Shao Zhibing Tan Zhibing Tan Siyan Liu Siyan Liu Siyan Liu Shumin Duan Shumin Duan Shumin Duan Shumin Duan Lijun Kang Lijun Kang Lijun Kang |
author_sort |
Hankui Cheng |
title |
Molecular Strategies for Intensity-Dependent Olfactory Processing in Caenorhabditis elegans |
title_short |
Molecular Strategies for Intensity-Dependent Olfactory Processing in Caenorhabditis elegans |
title_full |
Molecular Strategies for Intensity-Dependent Olfactory Processing in Caenorhabditis elegans |
title_fullStr |
Molecular Strategies for Intensity-Dependent Olfactory Processing in Caenorhabditis elegans |
title_full_unstemmed |
Molecular Strategies for Intensity-Dependent Olfactory Processing in Caenorhabditis elegans |
title_sort |
molecular strategies for intensity-dependent olfactory processing in caenorhabditis elegans |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/ad081f0ca0de45eba9751e1c95a4739e |
work_keys_str_mv |
AT hankuicheng molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT hankuicheng molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT hankuicheng molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT yuliu molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT yuliu molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT yuliu molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT yadanxue molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT yadanxue molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT jiajieshao molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT jiajieshao molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT zhibingtan molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT zhibingtan molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT siyanliu molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT siyanliu molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT siyanliu molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT shuminduan molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT shuminduan molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT shuminduan molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT shuminduan molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT lijunkang molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT lijunkang molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans AT lijunkang molecularstrategiesforintensitydependentolfactoryprocessingincaenorhabditiselegans |
_version_ |
1718444983224107008 |