Machine Learning Algorithms for Risk Prediction of Severe Hand-Foot-Mouth Disease in Children
Abstract The identification of indicators for severe HFMD is critical for early prevention and control of the disease. With this goal in mind, 185 severe and 345 mild HFMD cases were assessed. Patient demographics, clinical features, MRI findings, and laboratory test results were collected. Gradient...
Enregistré dans:
Auteurs principaux: | Bin Zhang, Xiang Wan, Fu-sheng Ouyang, Yu-hao Dong, De-hui Luo, Jing Liu, Long Liang, Wen-bo Chen, Xiao-ning Luo, Xiao-kai Mo, Lu Zhang, Wen-hui Huang, Shu-fang Pei, Bao-liang Guo, Chang-hong Liang, Zhou-yang Lian, Shui-xing Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ad117bf7caa74d37a6f68d8b0d07eb2b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The Clinical and Epidemiological Study of Children with Hand, Foot, and Mouth Disease in Hunan, China from 2013 to 2017
par: Jun Qiu, et autres
Publié: (2019) -
Cytokine and Chemokine Profiling in Patients with Hand, Foot and Mouth Disease in Singapore and Malaysia
par: Fiona Mei Shan Teo, et autres
Publié: (2018) -
Derivation and Validation of a Mortality Risk Score for Severe Hand, Foot and Mouth Disease in China
par: Jun Qiu, et autres
Publié: (2017) -
Epidemiological characteristics of hand, foot, and mouth disease in Shandong, China, 2009–2016
par: Jing Wang, et autres
Publié: (2017) -
Trend analysis and forecast of daily reported incidence of hand, foot and mouth disease in Hubei, China by Prophet model
par: Cong Xie, et autres
Publié: (2021)