Gaussian synapses for probabilistic neural networks
Designing large-scale hardware implementation of Probabilistic Neural Network for energy efficient neuromorphic computing systems remains a challenge. Here, the authors propose an hardware design based on MoS2/BP heterostructures as reconfigurable Gaussian synapses enabling EEG patterns recognition.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ad20e8a07db343ebacc0a4a6dcfc367e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Designing large-scale hardware implementation of Probabilistic Neural Network for energy efficient neuromorphic computing systems remains a challenge. Here, the authors propose an hardware design based on MoS2/BP heterostructures as reconfigurable Gaussian synapses enabling EEG patterns recognition. |
---|