Gaussian synapses for probabilistic neural networks

Designing large-scale hardware implementation of Probabilistic Neural Network for energy efficient neuromorphic computing systems remains a challenge. Here, the authors propose an hardware design based on MoS2/BP heterostructures as reconfigurable Gaussian synapses enabling EEG patterns recognition.

Guardado en:
Detalles Bibliográficos
Autores principales: Amritanand Sebastian, Andrew Pannone, Shiva Subbulakshmi Radhakrishnan, Saptarshi Das
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/ad20e8a07db343ebacc0a4a6dcfc367e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Designing large-scale hardware implementation of Probabilistic Neural Network for energy efficient neuromorphic computing systems remains a challenge. Here, the authors propose an hardware design based on MoS2/BP heterostructures as reconfigurable Gaussian synapses enabling EEG patterns recognition.