Gaussian synapses for probabilistic neural networks

Designing large-scale hardware implementation of Probabilistic Neural Network for energy efficient neuromorphic computing systems remains a challenge. Here, the authors propose an hardware design based on MoS2/BP heterostructures as reconfigurable Gaussian synapses enabling EEG patterns recognition.

Guardado en:
Detalles Bibliográficos
Autores principales: Amritanand Sebastian, Andrew Pannone, Shiva Subbulakshmi Radhakrishnan, Saptarshi Das
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/ad20e8a07db343ebacc0a4a6dcfc367e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ad20e8a07db343ebacc0a4a6dcfc367e
record_format dspace
spelling oai:doaj.org-article:ad20e8a07db343ebacc0a4a6dcfc367e2021-12-02T16:58:25ZGaussian synapses for probabilistic neural networks10.1038/s41467-019-12035-62041-1723https://doaj.org/article/ad20e8a07db343ebacc0a4a6dcfc367e2019-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12035-6https://doaj.org/toc/2041-1723Designing large-scale hardware implementation of Probabilistic Neural Network for energy efficient neuromorphic computing systems remains a challenge. Here, the authors propose an hardware design based on MoS2/BP heterostructures as reconfigurable Gaussian synapses enabling EEG patterns recognition.Amritanand SebastianAndrew PannoneShiva Subbulakshmi RadhakrishnanSaptarshi DasNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-11 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Amritanand Sebastian
Andrew Pannone
Shiva Subbulakshmi Radhakrishnan
Saptarshi Das
Gaussian synapses for probabilistic neural networks
description Designing large-scale hardware implementation of Probabilistic Neural Network for energy efficient neuromorphic computing systems remains a challenge. Here, the authors propose an hardware design based on MoS2/BP heterostructures as reconfigurable Gaussian synapses enabling EEG patterns recognition.
format article
author Amritanand Sebastian
Andrew Pannone
Shiva Subbulakshmi Radhakrishnan
Saptarshi Das
author_facet Amritanand Sebastian
Andrew Pannone
Shiva Subbulakshmi Radhakrishnan
Saptarshi Das
author_sort Amritanand Sebastian
title Gaussian synapses for probabilistic neural networks
title_short Gaussian synapses for probabilistic neural networks
title_full Gaussian synapses for probabilistic neural networks
title_fullStr Gaussian synapses for probabilistic neural networks
title_full_unstemmed Gaussian synapses for probabilistic neural networks
title_sort gaussian synapses for probabilistic neural networks
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/ad20e8a07db343ebacc0a4a6dcfc367e
work_keys_str_mv AT amritanandsebastian gaussiansynapsesforprobabilisticneuralnetworks
AT andrewpannone gaussiansynapsesforprobabilisticneuralnetworks
AT shivasubbulakshmiradhakrishnan gaussiansynapsesforprobabilisticneuralnetworks
AT saptarshidas gaussiansynapsesforprobabilisticneuralnetworks
_version_ 1718382349302890496