An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China
Wenzhong Shi et al. propose an extended Weight Kernel Density Estimation model to predict the COVID-19 onset risk, with and without the Wuhan lockdown, and corresponding symptom onset and spatial heterogeneity in 347 Chinese cities. The authors find that the lockdown delayed COVID-19 peak onset by 1...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ad2ac98641494ad49b5bb3bf054219d6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ad2ac98641494ad49b5bb3bf054219d6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ad2ac98641494ad49b5bb3bf054219d62021-12-02T14:16:33ZAn extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China10.1038/s42003-021-01677-22399-3642https://doaj.org/article/ad2ac98641494ad49b5bb3bf054219d62021-01-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-01677-2https://doaj.org/toc/2399-3642Wenzhong Shi et al. propose an extended Weight Kernel Density Estimation model to predict the COVID-19 onset risk, with and without the Wuhan lockdown, and corresponding symptom onset and spatial heterogeneity in 347 Chinese cities. The authors find that the lockdown delayed COVID-19 peak onset by 1–2 days and decreased onset risk by up to 21%.Wenzhong ShiChengzhuo TongAnshu ZhangBin WangZhicheng ShiYepeng YaoPeng JiaNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Wenzhong Shi Chengzhuo Tong Anshu Zhang Bin Wang Zhicheng Shi Yepeng Yao Peng Jia An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China |
description |
Wenzhong Shi et al. propose an extended Weight Kernel Density Estimation model to predict the COVID-19 onset risk, with and without the Wuhan lockdown, and corresponding symptom onset and spatial heterogeneity in 347 Chinese cities. The authors find that the lockdown delayed COVID-19 peak onset by 1–2 days and decreased onset risk by up to 21%. |
format |
article |
author |
Wenzhong Shi Chengzhuo Tong Anshu Zhang Bin Wang Zhicheng Shi Yepeng Yao Peng Jia |
author_facet |
Wenzhong Shi Chengzhuo Tong Anshu Zhang Bin Wang Zhicheng Shi Yepeng Yao Peng Jia |
author_sort |
Wenzhong Shi |
title |
An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China |
title_short |
An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China |
title_full |
An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China |
title_fullStr |
An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China |
title_full_unstemmed |
An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China |
title_sort |
extended weight kernel density estimation model forecasts covid-19 onset risk and identifies spatiotemporal variations of lockdown effects in china |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/ad2ac98641494ad49b5bb3bf054219d6 |
work_keys_str_mv |
AT wenzhongshi anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT chengzhuotong anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT anshuzhang anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT binwang anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT zhichengshi anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT yepengyao anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT pengjia anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT wenzhongshi extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT chengzhuotong extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT anshuzhang extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT binwang extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT zhichengshi extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT yepengyao extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT pengjia extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina |
_version_ |
1718391685839323136 |