An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China
Wenzhong Shi et al. propose an extended Weight Kernel Density Estimation model to predict the COVID-19 onset risk, with and without the Wuhan lockdown, and corresponding symptom onset and spatial heterogeneity in 347 Chinese cities. The authors find that the lockdown delayed COVID-19 peak onset by 1...
Guardado en:
Autores principales: | Wenzhong Shi, Chengzhuo Tong, Anshu Zhang, Bin Wang, Zhicheng Shi, Yepeng Yao, Peng Jia |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ad2ac98641494ad49b5bb3bf054219d6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China
por: Wenzhong Shi, et al.
Publicado: (2021) -
A Data-Driven Framework for Analyzing Spatial Distribution of the Elderly Cardholders by Using Smart Card Data
por: Zhicheng Shi, et al.
Publicado: (2021) -
Spatiotemporal characteristic and forecast of drought in northern Xinjiang, China
por: Haiwei Zhang, et al.
Publicado: (2021) -
An Analysis of the Operation of Distribution Networks Using Kernel Density Estimators
por: Mirosław Kornatka, et al.
Publicado: (2021) -
Identifying the density of grassland fire points with kernel density estimation based on spatial distribution characteristics
por: Shuo Zhen, et al.
Publicado: (2021)