The fuel consumption analysis for satellite formation reconfiguration based on three-impulsive approach
Currently micro/nano satellites have become the protagonists in most formation flying missions, and there is an urgent demand to propose a reliable approach for quick fuel estimation of multiple-impulsive scheme on-board to achieve formation reconfiguration problems. This paper presents an optimal c...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ad2ad97ce14f4435bb021692d622f2f9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ad2ad97ce14f4435bb021692d622f2f9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ad2ad97ce14f4435bb021692d622f2f92021-11-26T04:34:10ZThe fuel consumption analysis for satellite formation reconfiguration based on three-impulsive approach2352-484710.1016/j.egyr.2021.08.117https://doaj.org/article/ad2ad97ce14f4435bb021692d622f2f92021-11-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2352484721007198https://doaj.org/toc/2352-4847Currently micro/nano satellites have become the protagonists in most formation flying missions, and there is an urgent demand to propose a reliable approach for quick fuel estimation of multiple-impulsive scheme on-board to achieve formation reconfiguration problems. This paper presents an optimal control approach based on multiple impulses for satellite formation in-plane reconfiguration issue in near circular orbit. Based on initial small deviation in the cylindrical coordinates system, a relative orbit motion expression is investigated, and a time-varying propagate system without perturbation is presented in this paper, which is suitable to calculate the solution of relative orbital maneuver by multiple impulses. The formation reconfiguration problem of this relative orbit motion is considered, and orbital motion equations with initial deviations are presented for relative orbital transfer calculation. Through different combinations of method from normal four-impulsive solution, the optimal three-impulsive method for relative orbital transfer in plane is obtained by analysis solution based on graphical and numerical way. In the end of paper, the effectivity and optimality of method is validated, and fuel consumption is analyzed through simulations of assumptive different formation reconfiguration missions.Xingchuan LiuDanhe ChenWenhe LiaoKunxu WuElsevierarticleSatellite formation reconfigurationRelative motion equationThree-impulsive approachOptimal impulsive schemeCombinational methodElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENEnergy Reports, Vol 7, Iss , Pp 65-77 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Satellite formation reconfiguration Relative motion equation Three-impulsive approach Optimal impulsive scheme Combinational method Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
Satellite formation reconfiguration Relative motion equation Three-impulsive approach Optimal impulsive scheme Combinational method Electrical engineering. Electronics. Nuclear engineering TK1-9971 Xingchuan Liu Danhe Chen Wenhe Liao Kunxu Wu The fuel consumption analysis for satellite formation reconfiguration based on three-impulsive approach |
description |
Currently micro/nano satellites have become the protagonists in most formation flying missions, and there is an urgent demand to propose a reliable approach for quick fuel estimation of multiple-impulsive scheme on-board to achieve formation reconfiguration problems. This paper presents an optimal control approach based on multiple impulses for satellite formation in-plane reconfiguration issue in near circular orbit. Based on initial small deviation in the cylindrical coordinates system, a relative orbit motion expression is investigated, and a time-varying propagate system without perturbation is presented in this paper, which is suitable to calculate the solution of relative orbital maneuver by multiple impulses. The formation reconfiguration problem of this relative orbit motion is considered, and orbital motion equations with initial deviations are presented for relative orbital transfer calculation. Through different combinations of method from normal four-impulsive solution, the optimal three-impulsive method for relative orbital transfer in plane is obtained by analysis solution based on graphical and numerical way. In the end of paper, the effectivity and optimality of method is validated, and fuel consumption is analyzed through simulations of assumptive different formation reconfiguration missions. |
format |
article |
author |
Xingchuan Liu Danhe Chen Wenhe Liao Kunxu Wu |
author_facet |
Xingchuan Liu Danhe Chen Wenhe Liao Kunxu Wu |
author_sort |
Xingchuan Liu |
title |
The fuel consumption analysis for satellite formation reconfiguration based on three-impulsive approach |
title_short |
The fuel consumption analysis for satellite formation reconfiguration based on three-impulsive approach |
title_full |
The fuel consumption analysis for satellite formation reconfiguration based on three-impulsive approach |
title_fullStr |
The fuel consumption analysis for satellite formation reconfiguration based on three-impulsive approach |
title_full_unstemmed |
The fuel consumption analysis for satellite formation reconfiguration based on three-impulsive approach |
title_sort |
fuel consumption analysis for satellite formation reconfiguration based on three-impulsive approach |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/ad2ad97ce14f4435bb021692d622f2f9 |
work_keys_str_mv |
AT xingchuanliu thefuelconsumptionanalysisforsatelliteformationreconfigurationbasedonthreeimpulsiveapproach AT danhechen thefuelconsumptionanalysisforsatelliteformationreconfigurationbasedonthreeimpulsiveapproach AT wenheliao thefuelconsumptionanalysisforsatelliteformationreconfigurationbasedonthreeimpulsiveapproach AT kunxuwu thefuelconsumptionanalysisforsatelliteformationreconfigurationbasedonthreeimpulsiveapproach AT xingchuanliu fuelconsumptionanalysisforsatelliteformationreconfigurationbasedonthreeimpulsiveapproach AT danhechen fuelconsumptionanalysisforsatelliteformationreconfigurationbasedonthreeimpulsiveapproach AT wenheliao fuelconsumptionanalysisforsatelliteformationreconfigurationbasedonthreeimpulsiveapproach AT kunxuwu fuelconsumptionanalysisforsatelliteformationreconfigurationbasedonthreeimpulsiveapproach |
_version_ |
1718409860724293632 |