An on-board 2G HTS magnets system with cooling-power-free and persistent-current operation for ultrahigh speed superconducting maglevs
Abstract Introduction of superconductor to magnetic levitation (maglev) trains greatly enhances the performances compared to those of normal conductor maglevs, e.g. from 430 km/h of the Transrapid (in Shanghai) to 603 km/h of the L0 Series in Japan. However, one of the important constraints on devel...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ad2eda58f5d64edd9496cc940714306f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ad2eda58f5d64edd9496cc940714306f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ad2eda58f5d64edd9496cc940714306f2021-12-02T16:08:52ZAn on-board 2G HTS magnets system with cooling-power-free and persistent-current operation for ultrahigh speed superconducting maglevs10.1038/s41598-019-48136-x2045-2322https://doaj.org/article/ad2eda58f5d64edd9496cc940714306f2019-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-019-48136-xhttps://doaj.org/toc/2045-2322Abstract Introduction of superconductor to magnetic levitation (maglev) trains greatly enhances the performances compared to those of normal conductor maglevs, e.g. from 430 km/h of the Transrapid (in Shanghai) to 603 km/h of the L0 Series in Japan. However, one of the important constraints on development of superconducting maglevs is limited wireless feeding power for on-board superconducting magnets and cryogenic cooling. In this paper, a persistent-current superconducting magnets system with solid nitrogen (SN2) cooling preservation is proposed for liberation of its demanding on-board power feeding requirement. The magnets are optimally designed with no-insulation technique guaranteeing a safe operation with magnetic field over 0.8 T. Lasting time of persistent current (at 96.5% magnetic field retained) and SN2 cooling preservation (up to 40 K) is all >9 h, covering a maglev traveling distance of >5400 km at average designed speed of >600 km/h. The magnets have anti-vibration ability of 15 g (147 m/s2) up to 350 Hz, which has covered the vibratory motion range in maglevs. This work is intended to provide a reference for superconducting maglev developments.Fangliang DongZhen HuangLuning HaoXiaoyong XuZhijian JinNan ShaoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 9, Iss 1, Pp 1-12 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Fangliang Dong Zhen Huang Luning Hao Xiaoyong Xu Zhijian Jin Nan Shao An on-board 2G HTS magnets system with cooling-power-free and persistent-current operation for ultrahigh speed superconducting maglevs |
description |
Abstract Introduction of superconductor to magnetic levitation (maglev) trains greatly enhances the performances compared to those of normal conductor maglevs, e.g. from 430 km/h of the Transrapid (in Shanghai) to 603 km/h of the L0 Series in Japan. However, one of the important constraints on development of superconducting maglevs is limited wireless feeding power for on-board superconducting magnets and cryogenic cooling. In this paper, a persistent-current superconducting magnets system with solid nitrogen (SN2) cooling preservation is proposed for liberation of its demanding on-board power feeding requirement. The magnets are optimally designed with no-insulation technique guaranteeing a safe operation with magnetic field over 0.8 T. Lasting time of persistent current (at 96.5% magnetic field retained) and SN2 cooling preservation (up to 40 K) is all >9 h, covering a maglev traveling distance of >5400 km at average designed speed of >600 km/h. The magnets have anti-vibration ability of 15 g (147 m/s2) up to 350 Hz, which has covered the vibratory motion range in maglevs. This work is intended to provide a reference for superconducting maglev developments. |
format |
article |
author |
Fangliang Dong Zhen Huang Luning Hao Xiaoyong Xu Zhijian Jin Nan Shao |
author_facet |
Fangliang Dong Zhen Huang Luning Hao Xiaoyong Xu Zhijian Jin Nan Shao |
author_sort |
Fangliang Dong |
title |
An on-board 2G HTS magnets system with cooling-power-free and persistent-current operation for ultrahigh speed superconducting maglevs |
title_short |
An on-board 2G HTS magnets system with cooling-power-free and persistent-current operation for ultrahigh speed superconducting maglevs |
title_full |
An on-board 2G HTS magnets system with cooling-power-free and persistent-current operation for ultrahigh speed superconducting maglevs |
title_fullStr |
An on-board 2G HTS magnets system with cooling-power-free and persistent-current operation for ultrahigh speed superconducting maglevs |
title_full_unstemmed |
An on-board 2G HTS magnets system with cooling-power-free and persistent-current operation for ultrahigh speed superconducting maglevs |
title_sort |
on-board 2g hts magnets system with cooling-power-free and persistent-current operation for ultrahigh speed superconducting maglevs |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/ad2eda58f5d64edd9496cc940714306f |
work_keys_str_mv |
AT fangliangdong anonboard2ghtsmagnetssystemwithcoolingpowerfreeandpersistentcurrentoperationforultrahighspeedsuperconductingmaglevs AT zhenhuang anonboard2ghtsmagnetssystemwithcoolingpowerfreeandpersistentcurrentoperationforultrahighspeedsuperconductingmaglevs AT luninghao anonboard2ghtsmagnetssystemwithcoolingpowerfreeandpersistentcurrentoperationforultrahighspeedsuperconductingmaglevs AT xiaoyongxu anonboard2ghtsmagnetssystemwithcoolingpowerfreeandpersistentcurrentoperationforultrahighspeedsuperconductingmaglevs AT zhijianjin anonboard2ghtsmagnetssystemwithcoolingpowerfreeandpersistentcurrentoperationforultrahighspeedsuperconductingmaglevs AT nanshao anonboard2ghtsmagnetssystemwithcoolingpowerfreeandpersistentcurrentoperationforultrahighspeedsuperconductingmaglevs AT fangliangdong onboard2ghtsmagnetssystemwithcoolingpowerfreeandpersistentcurrentoperationforultrahighspeedsuperconductingmaglevs AT zhenhuang onboard2ghtsmagnetssystemwithcoolingpowerfreeandpersistentcurrentoperationforultrahighspeedsuperconductingmaglevs AT luninghao onboard2ghtsmagnetssystemwithcoolingpowerfreeandpersistentcurrentoperationforultrahighspeedsuperconductingmaglevs AT xiaoyongxu onboard2ghtsmagnetssystemwithcoolingpowerfreeandpersistentcurrentoperationforultrahighspeedsuperconductingmaglevs AT zhijianjin onboard2ghtsmagnetssystemwithcoolingpowerfreeandpersistentcurrentoperationforultrahighspeedsuperconductingmaglevs AT nanshao onboard2ghtsmagnetssystemwithcoolingpowerfreeandpersistentcurrentoperationforultrahighspeedsuperconductingmaglevs |
_version_ |
1718384489542975488 |