Investigation of super-critical water-based nanofluid with different nanoparticles (shapes and types) used in the rectangular corrugated tube of reactors
In this paper, an optimized rectangular corrugated tube is used for the super-critical water reactor (SCWR) cooling, numerically. Al2O3, CuO, Fe3O4 and TiO2 nanoparticles in different shapes (spherical, brick, platelet and cylindrical) are considered as additives to SCW for cooling purposes, and it...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ad44c65f142e4533bf81aa242a3e7255 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ad44c65f142e4533bf81aa242a3e7255 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ad44c65f142e4533bf81aa242a3e72552021-12-02T04:59:34ZInvestigation of super-critical water-based nanofluid with different nanoparticles (shapes and types) used in the rectangular corrugated tube of reactors1110-016810.1016/j.aej.2021.06.083https://doaj.org/article/ad44c65f142e4533bf81aa242a3e72552022-03-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1110016821004439https://doaj.org/toc/1110-0168In this paper, an optimized rectangular corrugated tube is used for the super-critical water reactor (SCWR) cooling, numerically. Al2O3, CuO, Fe3O4 and TiO2 nanoparticles in different shapes (spherical, brick, platelet and cylindrical) are considered as additives to SCW for cooling purposes, and it is tried to introduce the most suitable cases from the maximum heat transfer view point. Piecewise temperature-dependent properties are considered for the SCW and different correlations such as Brinkman and Pak equations were examined for nanofluid properties. The governing equation are solved based on control volume method (CVM) software, where the SCW properties are introduced to it by a user defined function (UDF). As the main outcome, Pak and Cho correlation had the best fitted curves with other presented functions. Also, the corrugated tube filled by spherical alumina-SCW had the best performance for SCWR cooling.H. BehzadniaHui JinM. NajafianM. HatamiElsevierarticleSuper-critical waterNanoparticlesCorrugated tubeCooling processNusseltEngineering (General). Civil engineering (General)TA1-2040ENAlexandria Engineering Journal, Vol 61, Iss 3, Pp 2330-2347 (2022) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Super-critical water Nanoparticles Corrugated tube Cooling process Nusselt Engineering (General). Civil engineering (General) TA1-2040 |
spellingShingle |
Super-critical water Nanoparticles Corrugated tube Cooling process Nusselt Engineering (General). Civil engineering (General) TA1-2040 H. Behzadnia Hui Jin M. Najafian M. Hatami Investigation of super-critical water-based nanofluid with different nanoparticles (shapes and types) used in the rectangular corrugated tube of reactors |
description |
In this paper, an optimized rectangular corrugated tube is used for the super-critical water reactor (SCWR) cooling, numerically. Al2O3, CuO, Fe3O4 and TiO2 nanoparticles in different shapes (spherical, brick, platelet and cylindrical) are considered as additives to SCW for cooling purposes, and it is tried to introduce the most suitable cases from the maximum heat transfer view point. Piecewise temperature-dependent properties are considered for the SCW and different correlations such as Brinkman and Pak equations were examined for nanofluid properties. The governing equation are solved based on control volume method (CVM) software, where the SCW properties are introduced to it by a user defined function (UDF). As the main outcome, Pak and Cho correlation had the best fitted curves with other presented functions. Also, the corrugated tube filled by spherical alumina-SCW had the best performance for SCWR cooling. |
format |
article |
author |
H. Behzadnia Hui Jin M. Najafian M. Hatami |
author_facet |
H. Behzadnia Hui Jin M. Najafian M. Hatami |
author_sort |
H. Behzadnia |
title |
Investigation of super-critical water-based nanofluid with different nanoparticles (shapes and types) used in the rectangular corrugated tube of reactors |
title_short |
Investigation of super-critical water-based nanofluid with different nanoparticles (shapes and types) used in the rectangular corrugated tube of reactors |
title_full |
Investigation of super-critical water-based nanofluid with different nanoparticles (shapes and types) used in the rectangular corrugated tube of reactors |
title_fullStr |
Investigation of super-critical water-based nanofluid with different nanoparticles (shapes and types) used in the rectangular corrugated tube of reactors |
title_full_unstemmed |
Investigation of super-critical water-based nanofluid with different nanoparticles (shapes and types) used in the rectangular corrugated tube of reactors |
title_sort |
investigation of super-critical water-based nanofluid with different nanoparticles (shapes and types) used in the rectangular corrugated tube of reactors |
publisher |
Elsevier |
publishDate |
2022 |
url |
https://doaj.org/article/ad44c65f142e4533bf81aa242a3e7255 |
work_keys_str_mv |
AT hbehzadnia investigationofsupercriticalwaterbasednanofluidwithdifferentnanoparticlesshapesandtypesusedintherectangularcorrugatedtubeofreactors AT huijin investigationofsupercriticalwaterbasednanofluidwithdifferentnanoparticlesshapesandtypesusedintherectangularcorrugatedtubeofreactors AT mnajafian investigationofsupercriticalwaterbasednanofluidwithdifferentnanoparticlesshapesandtypesusedintherectangularcorrugatedtubeofreactors AT mhatami investigationofsupercriticalwaterbasednanofluidwithdifferentnanoparticlesshapesandtypesusedintherectangularcorrugatedtubeofreactors |
_version_ |
1718400909425246208 |