Some topological properties of uniform subdivision of Sierpiński graphs

Sierpiński graphs are family of fractal nature graphs having applications in mathematics of Tower of Hanoi, topology, computer science, and many more diverse areas of science and technology. This family of graphs can be generated by taking certain number of copies of the same basic graph. A topologi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Liu Jia-Bao, Siddiqui Hafiz Muhammad Afzal, Nadeem Muhammad Faisal, Binyamin Muhammad Ahsan
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/ad5bc937adf94d63831183d0455de2fb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ad5bc937adf94d63831183d0455de2fb
record_format dspace
spelling oai:doaj.org-article:ad5bc937adf94d63831183d0455de2fb2021-12-05T14:10:55ZSome topological properties of uniform subdivision of Sierpiński graphs0792-12412191-021910.1515/mgmc-2021-0006https://doaj.org/article/ad5bc937adf94d63831183d0455de2fb2021-07-01T00:00:00Zhttps://doi.org/10.1515/mgmc-2021-0006https://doaj.org/toc/0792-1241https://doaj.org/toc/2191-0219Sierpiński graphs are family of fractal nature graphs having applications in mathematics of Tower of Hanoi, topology, computer science, and many more diverse areas of science and technology. This family of graphs can be generated by taking certain number of copies of the same basic graph. A topological index is the number which shows some basic properties of the chemical structures. This article deals with degree based topological indices of uniform subdivision of the generalized Sierpiński graphs S(n,G) and Sierpiński gasket Sn. The closed formulae for the computation of different kinds of Zagreb indices, multiple Zagreb indices, reduced Zagreb indices, augmented Zagreb indices, Narumi-Katayama index, forgotten index, and Zagreb polynomials have been presented for the family of graphs.Liu Jia-BaoSiddiqui Hafiz Muhammad AfzalNadeem Muhammad FaisalBinyamin Muhammad AhsanDe GruyterarticleChemistryQD1-999ENMain Group Metal Chemistry, Vol 44, Iss 1, Pp 218-227 (2021)
institution DOAJ
collection DOAJ
language EN
topic Chemistry
QD1-999
spellingShingle Chemistry
QD1-999
Liu Jia-Bao
Siddiqui Hafiz Muhammad Afzal
Nadeem Muhammad Faisal
Binyamin Muhammad Ahsan
Some topological properties of uniform subdivision of Sierpiński graphs
description Sierpiński graphs are family of fractal nature graphs having applications in mathematics of Tower of Hanoi, topology, computer science, and many more diverse areas of science and technology. This family of graphs can be generated by taking certain number of copies of the same basic graph. A topological index is the number which shows some basic properties of the chemical structures. This article deals with degree based topological indices of uniform subdivision of the generalized Sierpiński graphs S(n,G) and Sierpiński gasket Sn. The closed formulae for the computation of different kinds of Zagreb indices, multiple Zagreb indices, reduced Zagreb indices, augmented Zagreb indices, Narumi-Katayama index, forgotten index, and Zagreb polynomials have been presented for the family of graphs.
format article
author Liu Jia-Bao
Siddiqui Hafiz Muhammad Afzal
Nadeem Muhammad Faisal
Binyamin Muhammad Ahsan
author_facet Liu Jia-Bao
Siddiqui Hafiz Muhammad Afzal
Nadeem Muhammad Faisal
Binyamin Muhammad Ahsan
author_sort Liu Jia-Bao
title Some topological properties of uniform subdivision of Sierpiński graphs
title_short Some topological properties of uniform subdivision of Sierpiński graphs
title_full Some topological properties of uniform subdivision of Sierpiński graphs
title_fullStr Some topological properties of uniform subdivision of Sierpiński graphs
title_full_unstemmed Some topological properties of uniform subdivision of Sierpiński graphs
title_sort some topological properties of uniform subdivision of sierpiński graphs
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/ad5bc937adf94d63831183d0455de2fb
work_keys_str_mv AT liujiabao sometopologicalpropertiesofuniformsubdivisionofsierpinskigraphs
AT siddiquihafizmuhammadafzal sometopologicalpropertiesofuniformsubdivisionofsierpinskigraphs
AT nadeemmuhammadfaisal sometopologicalpropertiesofuniformsubdivisionofsierpinskigraphs
AT binyaminmuhammadahsan sometopologicalpropertiesofuniformsubdivisionofsierpinskigraphs
_version_ 1718371622163841024