Inflated prediction accuracy of neuropsychiatric biomarkers caused by data leakage in feature selection
Abstract In recent years, machine learning techniques have been frequently applied to uncovering neuropsychiatric biomarkers with the aim of accurately diagnosing neuropsychiatric diseases and predicting treatment prognosis. However, many studies did not perform cross validation (CV) when using mach...
Enregistré dans:
Auteurs principaux: | Miseon Shim, Seung-Hwan Lee, Han-Jeong Hwang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ad61d8cc3ca4460d809b2864f5cb0832 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
THE FEATURES OF INFLATION IN RUSSIA
par: L. D. Efanova, et autres
Publié: (2019) -
MAIN STAGES OF RUSSIAN INFLATION: THEIR CHARACTERISTICS AND FEATURES
par: I. N. Primyshev
Publié: (2020) -
The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures.
par: Anne-Claire Haury, et autres
Publié: (2011) -
Optimising classification of Parkinson’s disease based on motor, olfactory, neuropsychiatric and sleep features
par: Jonathan P. Bestwick, et autres
Publié: (2021) -
Simulation and assessment of a water pollution accident caused by phenol leakage
par: Gaimei Guo, et autres
Publié: (2021)