Inflated prediction accuracy of neuropsychiatric biomarkers caused by data leakage in feature selection
Abstract In recent years, machine learning techniques have been frequently applied to uncovering neuropsychiatric biomarkers with the aim of accurately diagnosing neuropsychiatric diseases and predicting treatment prognosis. However, many studies did not perform cross validation (CV) when using mach...
Guardado en:
Autores principales: | Miseon Shim, Seung-Hwan Lee, Han-Jeong Hwang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ad61d8cc3ca4460d809b2864f5cb0832 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
THE FEATURES OF INFLATION IN RUSSIA
por: L. D. Efanova, et al.
Publicado: (2019) -
MAIN STAGES OF RUSSIAN INFLATION: THEIR CHARACTERISTICS AND FEATURES
por: I. N. Primyshev
Publicado: (2020) -
The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures.
por: Anne-Claire Haury, et al.
Publicado: (2011) -
Optimising classification of Parkinson’s disease based on motor, olfactory, neuropsychiatric and sleep features
por: Jonathan P. Bestwick, et al.
Publicado: (2021) -
Simulation and assessment of a water pollution accident caused by phenol leakage
por: Gaimei Guo, et al.
Publicado: (2021)