Chiral Aminoalcohols and Squaric Acid Amides as Ligands for Asymmetric Borane Reduction of Ketones: Insight to In Situ Formed Catalytic System by DOSY and Multinuclear NMR Experiments

A series of squaric acid amides (synthesized in 66–99% isolated yields) and a set of chiral aminoalcohols were comparatively studied as ligands in a model reaction of reduction of α-chloroacetophenone with BH<sub>3</sub>•SMe<sub>2</sub>. In all cases, the aminoalcohols demons...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yana Nikolova, Georgi M. Dobrikov, Zhanina Petkova, Pavletta Shestakova
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/ad7341feec5148f6891c12d37280b2a9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:A series of squaric acid amides (synthesized in 66–99% isolated yields) and a set of chiral aminoalcohols were comparatively studied as ligands in a model reaction of reduction of α-chloroacetophenone with BH<sub>3</sub>•SMe<sub>2</sub>. In all cases, the aminoalcohols demonstrated better efficiency (up to 94% <i>ee</i>), while only poor asymmetric induction was achieved with the corresponding squaramides. A mechanistic insight on the in situ formation and stability at room temperature of intermediates generated from ligands and borane as possible precursors of the oxazaborolidine-based catalytic system has been obtained by <sup>1</sup>H DOSY and multinuclear 1D and 2D (<sup>1</sup>H, <sup>10/11</sup>B, <sup>13</sup>C, <sup>15</sup>N) NMR spectroscopy of equimolar mixtures of borane and selected ligands. These results contribute to better understanding the complexity of the processes occurring in the reaction mixture prior to the possible oxazaborolidine formation, which play a crucial role on the degree of enantioselectivity achieved in the borane reduction of α-chloroacetophenone.