Groundwater Level Prediction Using a Multiple Objective Genetic Algorithm-Grey Relational Analysis Based Weighted Ensemble of ANFIS Models
Predicting groundwater levels is critical for ensuring sustainable use of an aquifer’s limited groundwater reserves and developing a useful groundwater abstraction management strategy. The purpose of this study was to assess the predictive accuracy and estimation capability of various models based o...
Guardado en:
Autores principales: | Dilip Kumar Roy, Sujit Kumar Biswas, Mohamed A. Mattar, Ahmed A. El-Shafei, Khandakar Faisal Ibn Murad, Kowshik Kumar Saha, Bithin Datta, Ahmed Z. Dewidar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ad7be52a1d7944f7890b6f21f46aac1e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Designing a Solar Photovoltaic System for Generating Renewable Energy of a Hospital: Performance Analysis and Adjustment Based on RSM and ANFIS Approaches
por: Rami Alamoudi, et al.
Publicado: (2021) -
Research on Rockburst Prediction Classification Based on GA-XGB Model
por: Xuebin Xie, et al.
Publicado: (2021) -
Application of ANFIS hybrids to predict coefficients of curvature and uniformity of treated unsaturated lateritic soil for sustainable earthworks
por: Kennedy C. Onyelowe, et al.
Publicado: (2021) -
CARACTERIZACIÓN DEL SOI USANDO ANFIS CON RESIDUALES HETEROCEDÁSTICOS
por: Zapata,Elizabeth C, et al.
Publicado: (2007) -
An artificially intelligent (or algorithm-enhanced) electronic medical record in orofacial pain
por: Anette Paulina Vistoso Monreal, et al.
Publicado: (2021)