Development of a Deep Learning Model to Assist With Diagnosis of Hepatocellular Carcinoma
BackgroundAn accurate pathological diagnosis of hepatocellular carcinoma (HCC), one of the malignant tumors with the highest mortality rate, is time-consuming and heavily reliant on the experience of a pathologist. In this report, we proposed a deep learning model that required minimal noise reducti...
Guardado en:
Autores principales: | Shi Feng, Xiaotian Yu, Wenjie Liang, Xuejie Li, Weixiang Zhong, Wanwan Hu, Han Zhang, Zunlei Feng, Mingli Song, Jing Zhang, Xiuming Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ad8d7d83bec544e19696d05b87852c76 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Best Practice Recommendations for the Implementation of a Digital Pathology Workflow in the Anatomic Pathology Laboratory by the European Society of Digital and Integrative Pathology (ESDIP)
por: Filippo Fraggetta, et al.
Publicado: (2021) -
Predicting Breast Cancer Gene Expression Signature by Applying Deep Convolutional Neural Networks From Unannotated Pathological Images
por: Nam Nhut Phan, et al.
Publicado: (2021) -
Research Progress of Cancer Classification Based on Deep Learning and Histopathological Images
por: YAN Rui, et al.
Publicado: (2021) -
The Impact of Histological Annotations for Accurate Tissue Classification Using Mass Spectrometry Imaging
por: Juliana Pereira Lopes Gonçalves, et al.
Publicado: (2021) -
Breast Invasive Ductal Carcinoma Classification on Whole Slide Images with Weakly-Supervised and Transfer Learning
por: Fahdi Kanavati, et al.
Publicado: (2021)