Estimation of excess air coefficient on coal combustion processes via gauss model and artificial neural network

It is no doubt that the most important contributing cause of global efficiency of coal fired thermal systems is combustion efficiency. In this study, the relationship between the flame image obtained by a CCD camera and the excess air coefficient (λ) has been modelled. The model has been obtained wi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sedat Golgiyaz, Muhammed Fatih Talu, Mahmut Daşkın, Cem Onat
Formato: article
Lenguaje:EN
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://doaj.org/article/ad9ad5c978a540169f91b873091c4d3a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:It is no doubt that the most important contributing cause of global efficiency of coal fired thermal systems is combustion efficiency. In this study, the relationship between the flame image obtained by a CCD camera and the excess air coefficient (λ) has been modelled. The model has been obtained with a three-stage approach: 1) Data collection and synchronization: Obtaining the flame images by means of a CCD camera mounted on a 10 cm diameter observation port, λ data has been coordinately measured and recorded by the flue gas analyzer. 2) Feature extraction: Gridding the flame image, it is divided into small pieces. The uniformity of each piece to the optimal flame image has been calculated by means of modelling with single and multivariable Gaussian, calculating of color probabilities and Gauss mixture approach. 3) Matching and testing: A multilayer artificial neural network (ANN) has been used for the matching of feature−λ.