Comparison of machine and deep learning for the classification of cervical cancer based on cervicography images
Abstract Cervical cancer is the second most common cancer in women worldwide with a mortality rate of 60%. Cervical cancer begins with no overt signs and has a long latent period, making early detection through regular checkups vitally immportant. In this study, we compare the performance of two dif...
Guardado en:
Autores principales: | Ye Rang Park, Young Jae Kim, Woong Ju, Kyehyun Nam, Soonyung Kim, Kwang Gi Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ad9f8069c7324947a784bd0318075e69 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
New polyp image classification technique using transfer learning of network-in-network structure in endoscopic images
por: Young Jae Kim, et al.
Publicado: (2021) -
A deep learning algorithm for automated measurement of vertebral body compression from X-ray images
por: Jae Won Seo, et al.
Publicado: (2021) -
Machine learning-based approach for disease severity classification of carpal tunnel syndrome
por: Dougho Park, et al.
Publicado: (2021) -
Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm
por: Ji Young Lee, et al.
Publicado: (2020) -
Dialysis adequacy predictions using a machine learning method
por: Hyung Woo Kim, et al.
Publicado: (2021)